==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO DESIGN 31-JAN-97 1ABZ . COMPND 2 MOLECULE: ALPHA-T-ALPHA; . AUTHOR Y.FEZOUI,P.J.CONNOLLY,J.J.OSTERHOUT . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3925.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32 84.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D >> 0 0 150 0, 0.0 3,-1.5 0, 0.0 4,-0.6 0.000 360.0 360.0 360.0 -39.2 11.4 1.9 6.9 2 2 A W H >> + 0 0 180 1,-0.3 4,-1.5 2,-0.2 3,-1.3 0.837 360.0 69.1 -53.1 -30.5 10.6 5.3 5.2 3 3 A L H 3> S+ 0 0 41 1,-0.3 4,-2.1 2,-0.2 5,-0.3 0.913 82.4 70.5 -58.4 -38.5 9.2 3.3 2.3 4 4 A K H <> S+ 0 0 105 -3,-1.5 4,-1.6 1,-0.3 -1,-0.3 0.899 103.4 45.1 -45.6 -36.7 6.3 2.2 4.5 5 5 A A H S+ 0 0 129 -4,-0.4 4,-1.1 -5,-0.4 3,-0.3 0.997 116.1 27.4 -68.4 -64.4 0.2 5.7 -2.5 11 11 A L H X S+ 0 0 52 -4,-2.2 4,-1.5 1,-0.2 -1,-0.2 0.460 110.3 80.2 -77.9 3.5 -3.0 4.0 -1.3 12 12 A Q H X S+ 0 0 103 -4,-1.3 4,-0.9 -5,-0.3 -1,-0.2 0.979 101.9 28.9 -74.0 -56.9 -3.9 7.2 0.5 13 13 A A H X S+ 0 0 70 -4,-1.2 4,-0.9 -3,-0.3 -2,-0.2 0.829 121.9 55.8 -73.3 -29.5 -5.2 9.3 -2.4 14 14 A L H >< S+ 0 0 126 -4,-1.1 3,-1.1 -5,-0.2 -2,-0.2 0.988 114.1 36.0 -67.3 -57.5 -6.4 6.1 -4.2 15 15 A E H >< S+ 0 0 81 -4,-1.5 3,-0.6 1,-0.2 -1,-0.2 0.708 106.9 72.6 -69.3 -15.4 -8.6 4.8 -1.4 16 16 A A H 3< S+ 0 0 75 -4,-0.9 -1,-0.2 1,-0.2 -2,-0.2 0.837 117.0 17.9 -68.9 -28.7 -9.5 8.4 -0.6 17 17 A R T << S+ 0 0 241 -3,-1.1 2,-0.5 -4,-0.9 -1,-0.2 -0.034 106.7 97.2-130.9 32.2 -11.6 8.5 -3.8 18 18 A G < + 0 0 13 -3,-0.6 3,-0.3 1,-0.1 2,-0.1 -0.928 40.1 179.4-126.3 111.4 -12.1 4.8 -4.6 19 19 A T S S+ 0 0 134 -2,-0.5 -4,-0.1 1,-0.2 -1,-0.1 -0.210 74.1 62.4-101.4 44.7 -15.3 3.1 -3.4 20 20 A D S S+ 0 0 125 -2,-0.1 -1,-0.2 1,-0.0 -5,-0.0 -0.167 81.4 69.4-161.4 56.0 -14.4 -0.3 -4.8 21 21 A S + 0 0 43 -3,-0.3 4,-0.4 -6,-0.1 -2,-0.1 0.070 45.4 123.7-165.5 36.2 -11.2 -1.7 -3.1 22 22 A N S S+ 0 0 132 1,-0.1 4,-0.1 2,-0.1 -3,-0.0 0.286 85.1 43.1 -87.6 14.2 -12.0 -2.6 0.5 23 23 A A S >> S+ 0 0 74 2,-0.1 3,-1.1 3,-0.0 4,-0.6 0.650 102.0 59.0-123.4 -43.1 -10.9 -6.2 -0.2 24 24 A E H 3> S+ 0 0 139 1,-0.2 4,-1.4 2,-0.2 -2,-0.1 0.661 84.0 89.9 -65.8 -10.7 -7.6 -5.9 -2.2 25 25 A L H 3> S+ 0 0 51 -4,-0.4 4,-1.7 1,-0.2 3,-0.4 0.930 85.1 50.7 -52.7 -45.1 -6.3 -3.9 0.7 26 26 A R H <> S+ 0 0 176 -3,-1.1 4,-1.5 1,-0.2 3,-0.4 0.991 104.4 53.7 -58.1 -62.0 -5.0 -7.2 2.3 27 27 A A H X S+ 0 0 43 -4,-0.6 4,-1.2 1,-0.2 -1,-0.2 0.800 106.6 59.4 -44.8 -25.5 -3.2 -8.4 -0.9 28 28 A M H X S+ 0 0 88 -4,-1.4 4,-1.8 -3,-0.4 3,-0.4 0.980 95.9 55.6 -70.7 -55.4 -1.5 -5.0 -0.7 29 29 A E H X S+ 0 0 135 -4,-1.7 4,-1.1 -3,-0.4 5,-0.2 0.863 102.6 62.2 -46.0 -35.0 0.1 -5.4 2.8 30 30 A A H X S+ 0 0 62 -4,-1.5 4,-1.3 1,-0.2 3,-0.3 0.982 104.5 42.9 -57.5 -57.8 1.7 -8.5 1.4 31 31 A K H X S+ 0 0 132 -4,-1.2 4,-1.7 -3,-0.4 -1,-0.2 0.782 100.0 80.6 -60.8 -22.2 3.7 -6.7 -1.3 32 32 A L H >X S+ 0 0 38 -4,-1.8 3,-1.5 1,-0.2 4,-1.3 0.968 99.7 33.0 -48.1 -70.8 4.5 -4.1 1.5 33 33 A K H 3X S+ 0 0 155 -4,-1.1 4,-1.2 1,-0.3 -1,-0.2 0.867 109.0 71.1 -56.8 -33.3 7.3 -6.1 3.1 34 34 A A H 3< S+ 0 0 62 -4,-1.3 3,-0.3 -5,-0.2 -1,-0.3 0.878 99.9 47.1 -52.5 -35.5 8.2 -7.4 -0.4 35 35 A E H X< S+ 0 0 100 -4,-1.7 3,-0.6 -3,-1.5 -1,-0.2 0.913 100.4 63.8 -74.5 -41.2 9.5 -3.9 -1.2 36 36 A I H 3< S+ 0 0 82 -4,-1.3 2,-0.7 1,-0.3 -1,-0.2 0.782 89.6 73.1 -54.4 -22.2 11.5 -3.6 2.1 37 37 A Q T 3< 0 0 153 -4,-1.2 -1,-0.3 -3,-0.3 -2,-0.1 -0.110 360.0 360.0 -85.4 42.1 13.5 -6.5 0.7 38 38 A K < 0 0 227 -2,-0.7 -2,-0.2 -3,-0.6 -1,-0.1 -0.019 360.0 360.0 167.8 360.0 15.2 -4.3 -1.9