==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 14-APR-95 1AGT . COMPND 2 MOLECULE: AGITOXIN 2; . SOURCE 2 ORGANISM_SCIENTIFIC: LEIURUS QUINQUESTRIATUS HEBRAEUS; . AUTHOR A.M.KREZEL,C.KASIBHATLA,P.HIDALGO,R.MACKINNON,G.WAGNER . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3070.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 63.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 28.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 86 0, 0.0 35,-0.2 0, 0.0 33,-0.0 0.000 360.0 360.0 360.0 -86.6 5.5 -4.3 2.8 2 2 A V E -A 35 0A 64 33,-1.8 33,-1.7 2,-0.0 2,-0.4 -0.945 360.0-139.3-115.3 105.1 5.2 -3.8 -1.0 3 3 A P E -A 34 0A 94 0, 0.0 2,-0.4 0, 0.0 31,-0.2 -0.511 19.7-168.4 -68.0 119.1 4.4 0.1 -1.8 4 4 A I - 0 0 36 29,-0.9 2,-1.3 -2,-0.4 29,-0.5 -0.879 28.5-116.1-106.5 142.3 1.8 0.4 -4.6 5 5 A N + 0 0 168 -2,-0.4 2,-0.3 27,-0.1 27,-0.1 -0.613 63.0 134.1 -82.5 89.7 1.2 3.9 -6.3 6 6 A V - 0 0 50 -2,-1.3 27,-1.2 27,-0.1 2,-0.5 -0.964 54.1-127.6-142.8 118.1 -2.5 4.6 -5.3 7 7 A S - 0 0 93 -2,-0.3 2,-0.2 25,-0.2 25,-0.2 -0.570 32.6-158.3 -78.5 117.8 -3.5 8.1 -3.9 8 8 A a - 0 0 14 -2,-0.5 3,-0.1 23,-0.4 23,-0.1 -0.619 36.1-173.8-101.6 155.6 -5.4 7.8 -0.6 9 9 A T S S- 0 0 131 1,-0.3 2,-0.2 -2,-0.2 -1,-0.1 0.687 85.1 -20.4-104.3 -41.0 -7.8 9.9 1.6 10 10 A G S > S- 0 0 33 20,-0.1 3,-0.5 21,-0.0 4,-0.3 -0.811 83.3 -74.3-146.2-166.6 -7.7 7.3 4.5 11 11 A S G > S+ 0 0 62 -2,-0.2 3,-1.0 1,-0.2 4,-0.3 0.887 115.5 64.8 -67.8 -41.9 -6.8 3.6 5.3 12 12 A P G > S+ 0 0 106 0, 0.0 3,-0.8 0, 0.0 4,-0.4 0.685 87.7 73.6 -54.6 -22.4 -10.0 1.8 3.7 13 13 A Q G < S+ 0 0 105 -3,-0.5 3,-0.3 1,-0.2 -2,-0.1 0.854 93.2 51.0 -58.1 -42.1 -9.0 3.0 0.1 14 14 A b G <> S+ 0 0 0 -3,-1.0 4,-2.1 -4,-0.3 5,-0.2 0.553 86.0 86.5 -76.8 -10.3 -6.0 0.5 -0.3 15 15 A I H <> S+ 0 0 79 -3,-0.8 4,-1.9 11,-0.3 -1,-0.2 0.935 96.6 35.8 -58.8 -55.2 -8.0 -2.8 0.7 16 16 A K H > S+ 0 0 130 -4,-0.4 4,-2.7 -3,-0.3 5,-0.3 0.954 117.0 52.0 -68.4 -51.3 -9.4 -3.6 -2.8 17 17 A P H > S+ 0 0 45 0, 0.0 4,-1.6 0, 0.0 -2,-0.2 0.873 113.2 46.3 -49.2 -43.1 -6.2 -2.4 -4.9 18 18 A c H X>S+ 0 0 0 -4,-2.1 4,-2.2 2,-0.2 5,-1.1 0.948 115.0 46.1 -60.9 -52.3 -3.9 -4.6 -2.6 19 19 A K H <5S+ 0 0 121 -4,-1.9 -3,-0.1 -5,-0.2 -1,-0.1 0.907 113.0 49.0 -57.5 -48.9 -6.3 -7.7 -3.0 20 20 A D H <5S+ 0 0 134 -4,-2.7 -1,-0.2 1,-0.2 -2,-0.2 0.838 112.9 48.2 -62.2 -37.2 -6.8 -7.4 -6.8 21 21 A A H <5S- 0 0 73 -4,-1.6 -2,-0.2 -5,-0.3 -1,-0.2 0.953 131.4 -84.3 -65.3 -52.9 -2.9 -7.1 -7.4 22 22 A G T <5S+ 0 0 45 -4,-2.2 16,-0.8 -5,-0.1 2,-0.3 0.459 85.5 110.2 146.4 53.2 -2.0 -10.2 -5.1 23 23 A M E < -B 37 0A 21 -5,-1.1 -1,-0.1 14,-0.2 3,-0.1 -0.880 59.7-127.7-142.2 166.6 -1.8 -9.3 -1.4 24 24 A R E S+ 0 0 140 12,-2.3 2,-0.2 -2,-0.3 -5,-0.1 0.969 82.5 14.9 -81.7 -63.0 -3.6 -9.8 2.0 25 25 A F E -B 36 0A 134 11,-0.7 11,-1.8 -7,-0.1 2,-0.3 -0.694 55.7-144.6-119.5 165.3 -4.2 -6.3 3.6 26 26 A G E +B 35 0A 4 -2,-0.2 2,-0.6 9,-0.2 -11,-0.3 -0.807 20.1 173.8-134.9 94.3 -4.1 -2.6 2.5 27 27 A K E -B 34 0A 151 7,-1.7 7,-1.2 -2,-0.3 2,-0.5 -0.902 21.0-149.9-101.7 119.1 -2.8 -0.1 5.2 28 28 A a E -B 33 0A 11 -2,-0.6 5,-0.2 5,-0.2 3,-0.1 -0.800 8.5-161.4-100.0 127.5 -2.4 3.4 3.7 29 29 A M E > -B 32 0A 115 3,-1.9 3,-0.8 -2,-0.5 2,-0.6 -0.146 62.4 -38.6 -83.2-173.4 0.1 6.1 4.9 30 30 A N T 3 S- 0 0 151 1,-0.3 -1,-0.1 -2,-0.1 -21,-0.1 -0.345 125.0 -31.1 -62.3 101.1 -0.3 9.9 4.1 31 31 A R T 3 S+ 0 0 176 -2,-0.6 -23,-0.4 -3,-0.1 2,-0.4 0.421 125.2 89.1 66.0 6.3 -1.7 9.9 0.5 32 32 A K E < S- B 0 29A 122 -3,-0.8 -3,-1.9 -25,-0.2 -25,-0.2 -0.980 70.9-126.9-141.5 127.1 0.2 6.5 -0.5 33 33 A b E - B 0 28A 1 -27,-1.2 -29,-0.9 -29,-0.5 2,-0.4 -0.355 16.3-169.1 -69.4 142.7 -0.8 2.8 -0.2 34 34 A H E -AB 3 27A 66 -7,-1.2 -7,-1.7 -31,-0.2 2,-0.2 -0.934 13.2-156.6-134.0 109.2 1.4 0.1 1.5 35 35 A c E -AB 2 26A 0 -33,-1.7 -33,-1.8 -2,-0.4 -9,-0.2 -0.488 16.2-131.1 -84.0 154.4 0.2 -3.6 0.9 36 36 A T E - B 0 25A 52 -11,-1.8 -12,-2.3 -35,-0.2 -11,-0.7 -0.915 37.6-124.8-101.4 106.1 0.9 -6.7 3.2 37 37 A P E B 0 23A 59 0, 0.0 -14,-0.2 0, 0.0 -19,-0.0 -0.159 360.0 360.0 -65.2 146.4 2.2 -9.4 0.7 38 38 A K 0 0 198 -16,-0.8 0, 0.0 -14,-0.0 0, 0.0 -0.723 360.0 360.0 -87.2 360.0 0.6 -12.9 0.5