==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 10-MAR-99 1CEU . COMPND 2 MOLECULE: PROTEIN (HIV-1 REGULATORY PROTEIN N-TERMINAL . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.WECKER,B.P.ROQUES . 51 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5117.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 13.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 41.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 187 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 122.2 -22.5 8.6 0.1 2 2 A E + 0 0 149 2,-0.0 2,-0.3 16,-0.0 0, 0.0 -0.242 360.0 68.7-154.3 48.2 -19.4 11.0 0.5 3 3 A Q S S- 0 0 90 0, 0.0 15,-0.1 0, 0.0 16,-0.1 -0.975 91.1 -77.2-165.0 157.7 -16.6 8.6 1.5 4 4 A A - 0 0 35 -2,-0.3 2,-0.2 14,-0.1 -2,-0.0 -0.510 52.5-124.7 -64.4 119.2 -14.3 5.7 0.2 5 5 A P - 0 0 28 0, 0.0 11,-0.1 0, 0.0 6,-0.1 -0.522 10.3-150.9 -73.3 131.2 -16.5 2.5 0.3 6 6 A E > - 0 0 120 -2,-0.2 5,-0.7 4,-0.1 -2,-0.0 0.934 24.5-156.7 -64.4 -49.4 -14.9 -0.4 2.3 7 7 A D T 5 - 0 0 62 3,-0.1 0, 0.0 6,-0.0 0, 0.0 0.919 69.1 -4.3 64.4 106.0 -16.5 -3.2 0.2 8 8 A Q T 5S- 0 0 170 2,-0.0 -1,-0.0 3,-0.0 0, 0.0 0.936 135.2 -44.9 47.3 61.1 -16.8 -6.6 2.0 9 9 A G T 5S- 0 0 35 2,-0.1 2,-0.7 1,-0.0 0, 0.0 -0.221 114.7 -16.8 77.5-173.2 -14.9 -5.3 5.1 10 10 A P T 5S+ 0 0 140 0, 0.0 2,-0.3 0, 0.0 -3,-0.1 -0.519 88.2 145.8 -67.6 105.4 -11.7 -3.2 5.1 11 11 A Q < - 0 0 90 -2,-0.7 -2,-0.1 -5,-0.7 2,-0.0 -0.988 49.5 -98.5-148.6 144.8 -10.4 -3.8 1.5 12 12 A R + 0 0 188 -2,-0.3 -6,-0.0 1,-0.0 0, 0.0 -0.289 40.0 157.7 -70.2 149.3 -8.6 -1.8 -1.2 13 13 A E > + 0 0 28 3,-0.0 3,-0.9 6,-0.0 6,-0.2 -0.347 5.3 172.4-170.9 72.7 -10.4 0.0 -4.1 14 14 A P T 3 + 0 0 55 0, 0.0 9,-0.2 0, 0.0 -2,-0.0 0.478 62.1 83.7 -74.1 -3.7 -8.1 2.9 -5.4 15 15 A Y T 3 + 0 0 174 5,-0.0 5,-0.1 8,-0.0 8,-0.0 0.768 66.5 97.9 -70.8 -32.8 -10.5 3.6 -8.4 16 16 A N S <> S- 0 0 17 -3,-0.9 4,-1.0 1,-0.1 5,-0.1 -0.105 82.0-120.2 -64.6 157.1 -13.0 6.0 -6.6 17 17 A D H > S+ 0 0 147 2,-0.2 4,-0.6 1,-0.2 -1,-0.1 0.787 118.4 53.6 -63.5 -28.6 -12.9 9.8 -6.8 18 18 A W H >> S+ 0 0 90 1,-0.2 4,-1.8 2,-0.2 3,-1.5 0.981 113.0 40.0 -65.3 -58.8 -12.5 9.6 -3.0 19 19 A T H 3> S+ 0 0 4 1,-0.3 4,-2.0 2,-0.3 -2,-0.2 0.551 96.3 78.9 -72.3 -6.8 -9.6 7.2 -3.2 20 20 A L H 3X S+ 0 0 112 -4,-1.0 4,-0.8 2,-0.2 -1,-0.3 0.901 110.1 30.9 -61.4 -33.7 -8.2 9.1 -6.1 21 21 A E H < S+ 0 0 66 -4,-1.4 3,-1.5 -5,-0.4 -2,-0.2 0.925 107.3 50.6 -56.5 -43.2 2.5 9.8 0.1 29 29 A E H >X S+ 0 0 90 -4,-2.4 4,-1.2 1,-0.3 3,-1.0 0.829 106.7 54.5 -61.8 -37.5 2.8 7.1 2.9 30 30 A A T 3< S+ 0 0 46 -4,-1.6 -1,-0.3 1,-0.3 -2,-0.2 0.437 113.6 42.1 -81.0 -2.0 5.0 5.1 0.5 31 31 A V T <4 S+ 0 0 89 -3,-1.5 -1,-0.3 -4,-0.3 -2,-0.2 -0.315 116.8 45.9-135.5 48.6 7.3 8.2 0.2 32 32 A R T <4 S+ 0 0 209 -3,-1.0 2,-0.6 -5,-0.0 -3,-0.2 0.230 125.1 23.4-141.8 -68.1 7.4 9.3 3.9 33 33 A H S < S+ 0 0 93 -4,-1.2 -4,-0.1 1,-0.2 -2,-0.0 -0.594 93.5 119.6-101.3 63.9 7.9 6.1 6.0 34 34 A F >> + 0 0 58 -2,-0.6 3,-1.0 2,-0.1 4,-0.6 0.394 31.8 95.8-110.3 -2.7 9.6 4.3 3.0 35 35 A P H >> S+ 0 0 69 0, 0.0 4,-2.8 0, 0.0 3,-1.3 0.939 96.0 39.0 -54.3 -48.1 13.2 3.4 4.0 36 36 A R H 3>>S+ 0 0 123 1,-0.3 4,-0.8 2,-0.3 5,-0.8 0.422 101.9 71.3 -87.6 8.5 12.2 -0.1 5.1 37 37 A I H <45S+ 0 0 76 -3,-1.0 -1,-0.3 3,-0.2 -3,-0.1 0.574 115.4 28.4 -90.7 -10.6 9.9 -0.3 2.1 38 38 A W H X S+ 0 0 38 -4,-2.4 4,-2.2 1,-0.2 3,-0.7 0.911 111.9 42.2 -51.0 -43.0 15.8 -7.8 3.3 44 44 A Q H 3X>S+ 0 0 100 -4,-2.2 4,-2.8 1,-0.2 2,-1.0 0.945 110.7 54.6 -68.5 -50.8 12.8 -9.9 2.3 45 45 A H H 3<5S+ 0 0 98 -4,-2.6 -1,-0.2 3,-0.2 -2,-0.2 -0.144 115.7 40.7 -83.3 44.9 13.9 -10.2 -1.4 46 46 A I H <45S+ 0 0 110 -2,-1.0 -2,-0.2 -3,-0.7 -1,-0.2 0.243 116.2 45.6-143.0 -60.0 17.3 -11.5 -0.3 47 47 A Y H <5S+ 0 0 158 -4,-2.2 -2,-0.2 -5,-0.3 -3,-0.2 0.945 125.8 33.7 -51.1 -58.8 16.3 -13.8 2.5 48 48 A E T <5S+ 0 0 115 -4,-2.8 2,-1.9 1,-0.2 3,-0.3 0.868 110.5 67.7 -67.5 -39.9 13.5 -15.3 0.4 49 49 A T < + 0 0 82 -5,-0.5 -1,-0.2 1,-0.2 -4,-0.0 -0.525 62.4 155.6 -81.6 68.9 15.6 -14.9 -2.8 50 50 A Y 0 0 179 -2,-1.9 -1,-0.2 1,-0.2 -2,-0.1 0.946 360.0 360.0 -61.2 -53.6 18.1 -17.6 -1.7 51 51 A G 0 0 133 -3,-0.3 -1,-0.2 0, 0.0 -2,-0.1 -0.359 360.0 360.0-161.4 360.0 19.2 -18.4 -5.3