==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 23-JUN-93 1COR . COMPND 2 MOLECULE: CYTOCHROME C551; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS STUTZERI; . AUTHOR M.CAI,E.G.BRADFORD,R.TIMKOVICH . 82 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5165.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 64.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 12.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 37.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X >> 0 0 146 0, 0.0 4,-1.8 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 -4.1 4.4 2.6 12.9 2 2 A D H 3> + 0 0 112 1,-0.3 4,-1.0 2,-0.2 5,-0.1 0.679 360.0 54.5 -50.0 -14.3 6.8 0.1 11.1 3 3 A G H 3> S+ 0 0 1 2,-0.2 4,-3.0 3,-0.1 5,-0.3 0.895 99.6 55.2 -87.4 -45.1 4.6 1.1 8.1 4 4 A E H <> S+ 0 0 88 -3,-0.6 4,-1.4 2,-0.2 -2,-0.2 0.890 106.7 54.9 -54.8 -40.5 5.1 4.8 8.3 5 5 A A H >X S+ 0 0 56 -4,-1.8 4,-1.9 2,-0.2 3,-1.4 0.989 113.3 37.1 -57.1 -68.4 8.8 4.4 8.2 6 6 A L H 3X S+ 0 0 28 -4,-1.0 4,-2.7 1,-0.3 3,-0.3 0.930 115.9 54.4 -49.8 -51.6 9.0 2.3 5.0 7 7 A F H 3< S+ 0 0 3 -4,-3.0 6,-0.5 1,-0.2 -1,-0.3 0.786 107.3 54.4 -54.3 -25.8 6.2 4.4 3.5 8 8 A K H << S+ 0 0 143 -3,-1.4 -1,-0.2 -4,-1.4 -2,-0.2 0.916 113.6 37.5 -75.4 -43.4 8.4 7.3 4.3 9 9 A S H < S+ 0 0 102 -4,-1.9 -2,-0.2 -3,-0.3 -1,-0.2 0.691 111.6 73.5 -79.8 -17.9 11.5 6.0 2.4 10 10 A K S >< S- 0 0 25 -4,-2.7 3,-0.9 -5,-0.3 4,-0.1 -0.864 85.5-132.3-101.1 127.9 9.2 4.6 -0.2 11 11 A P T >> S+ 0 0 84 0, 0.0 3,-0.9 0, 0.0 4,-0.9 0.404 73.5 122.3 -55.3 4.6 7.6 7.1 -2.6 12 12 A C H 3> S+ 0 0 17 1,-0.3 4,-3.1 -6,-0.2 3,-0.3 0.735 70.6 58.5 -42.7 -23.1 4.4 5.2 -1.9 13 13 A A H <4 S+ 0 0 36 -3,-0.9 -1,-0.3 -6,-0.5 14,-0.1 0.944 87.7 67.5 -75.4 -48.9 3.2 8.7 -0.8 14 14 A A H <4 S+ 0 0 77 -3,-0.9 -1,-0.2 1,-0.2 -2,-0.2 0.744 126.2 15.6 -42.8 -24.2 3.8 10.5 -4.1 15 15 A C H < S+ 0 0 48 -4,-0.9 8,-1.1 -3,-0.3 9,-0.9 0.660 125.7 57.7-121.3 -33.2 0.9 8.2 -5.2 16 16 A H < - 0 0 31 -4,-3.1 2,-0.3 -5,-0.3 -1,-0.2 -0.875 66.1-175.0-105.4 106.1 -0.7 6.9 -2.0 17 17 A S - 0 0 18 -2,-0.7 10,-1.0 3,-0.4 11,-0.7 -0.748 21.7-153.0 -98.7 148.5 -1.9 9.7 0.3 18 18 A I S S+ 0 0 49 -2,-0.3 -1,-0.1 8,-0.2 3,-0.1 0.668 101.3 27.6 -90.7 -18.5 -3.4 8.9 3.7 19 19 A D S S+ 0 0 143 9,-0.1 2,-0.2 8,-0.1 -1,-0.1 0.387 132.7 23.1-118.9 -2.3 -5.5 12.1 3.7 20 20 A A S S- 0 0 52 5,-0.0 2,-0.4 0, 0.0 -3,-0.4 -0.820 76.2-112.0-147.5-174.5 -6.0 12.4 -0.0 21 21 A K + 0 0 129 -2,-0.2 -5,-0.1 -5,-0.1 -3,-0.1 -0.994 35.1 152.1-132.7 137.6 -5.9 10.4 -3.3 22 22 A L S S- 0 0 90 -7,-0.9 -6,-0.2 2,-0.9 -7,-0.1 0.451 75.7 -26.4-123.6 -94.1 -3.4 10.5 -6.1 23 23 A V S S+ 0 0 79 -8,-1.1 -7,-0.1 2,-0.1 36,-0.1 0.874 126.7 35.9 -96.0 -49.9 -2.7 7.5 -8.3 24 24 A G S S- 0 0 13 -9,-0.9 -2,-0.9 -12,-0.2 -7,-0.3 -0.405 108.1 -66.0 -97.0 177.5 -3.4 4.6 -6.0 25 25 A P - 0 0 12 0, 0.0 -1,-0.1 0, 0.0 5,-0.1 -0.406 61.2-102.5 -63.0 131.9 -6.1 4.3 -3.3 26 26 A A >> - 0 0 1 1,-0.2 4,-2.9 -10,-0.1 3,-1.7 -0.377 28.7-121.4 -58.0 128.2 -5.6 6.8 -0.4 27 27 A F H 3> S+ 0 0 4 -10,-1.0 4,-2.7 1,-0.3 -9,-0.2 0.784 116.3 55.9 -41.5 -31.2 -4.1 4.8 2.5 28 28 A K H 3> S+ 0 0 105 -11,-0.7 4,-1.8 -8,-0.3 -1,-0.3 0.897 111.6 39.9 -71.7 -39.1 -7.1 6.0 4.4 29 29 A E H <> S+ 0 0 96 -3,-1.7 4,-1.2 -9,-0.2 -2,-0.2 0.787 117.0 52.1 -78.3 -26.9 -9.5 4.5 1.8 30 30 A V H X S+ 0 0 7 -4,-2.9 4,-3.1 2,-0.2 -2,-0.2 0.918 109.9 47.1 -73.6 -44.7 -7.3 1.5 1.5 31 31 A A H < S+ 0 0 10 -4,-2.7 6,-0.2 -5,-0.3 -2,-0.2 0.916 109.2 54.1 -63.7 -43.2 -7.3 0.8 5.2 32 32 A A H < S+ 0 0 78 -4,-1.8 3,-0.4 2,-0.2 -1,-0.2 0.863 114.3 42.9 -59.5 -35.0 -11.0 1.3 5.5 33 33 A K H < S+ 0 0 110 -4,-1.2 -2,-0.2 1,-0.2 -1,-0.2 0.968 128.1 27.4 -75.7 -54.9 -11.4 -1.4 2.8 34 34 A Y S >< S+ 0 0 29 -4,-3.1 3,-1.3 44,-0.1 -1,-0.2 -0.080 90.0 145.4 -96.7 34.4 -8.8 -3.8 4.1 35 35 A A T 3 S- 0 0 48 -3,-0.4 45,-0.2 1,-0.3 44,-0.1 -0.509 80.7 -8.0 -72.4 138.7 -9.2 -2.7 7.7 36 36 A G T 3 S+ 0 0 52 43,-0.8 2,-1.3 1,-0.2 -1,-0.3 0.712 97.6 138.1 48.8 17.3 -8.8 -5.6 10.2 37 37 A Q X - 0 0 96 -3,-1.3 3,-2.7 42,-0.2 4,-0.4 -0.398 39.8-166.1 -90.2 58.6 -8.8 -7.7 7.0 38 38 A D T 3 S+ 0 0 147 -2,-1.3 -3,-0.0 1,-0.3 38,-0.0 -0.052 72.5 33.4 -41.9 143.8 -6.0 -9.9 8.2 39 39 A G T 3> S+ 0 0 50 1,-0.0 4,-1.1 0, 0.0 -1,-0.3 0.041 101.2 84.2 92.4 -27.2 -4.6 -11.9 5.3 40 40 A A H X> S+ 0 0 13 -3,-2.7 4,-2.6 2,-0.2 3,-0.6 0.937 81.5 57.0 -74.6 -47.4 -5.3 -9.1 2.9 41 41 A A H 3> S+ 0 0 7 -4,-0.4 4,-2.5 1,-0.3 -1,-0.2 0.850 104.5 56.3 -51.9 -34.1 -2.1 -7.2 3.6 42 42 A D H 3> S+ 0 0 103 1,-0.2 4,-1.1 2,-0.2 -1,-0.3 0.911 109.2 44.0 -65.5 -41.7 -0.3 -10.4 2.6 43 43 A L H - 0 0 63 1,-0.1 4,-1.3 0, 0.0 5,-0.2 -0.596 38.5 -65.4-143.1-155.9 11.0 -5.9 -1.0 68 68 A E H >> S+ 0 0 129 2,-0.2 4,-3.1 -2,-0.2 3,-1.3 0.999 132.5 31.4 -66.8 -71.8 9.3 -8.7 0.9 69 69 A E H 3> S+ 0 0 134 1,-0.3 4,-1.4 2,-0.2 5,-0.2 0.802 120.8 56.1 -56.5 -28.8 9.6 -7.5 4.5 70 70 A E H 3> S+ 0 0 45 2,-0.2 4,-0.5 1,-0.1 -1,-0.3 0.778 113.7 39.3 -75.0 -25.5 9.4 -4.0 3.1 71 71 A A H X S+ 0 0 84 -4,-3.1 4,-3.0 2,-0.2 3,-1.2 0.978 109.1 48.0 -55.2 -62.5 4.5 -6.9 4.1 73 73 A I H 3X S+ 0 0 37 -4,-1.4 4,-3.0 1,-0.3 5,-0.3 0.879 112.7 50.6 -45.6 -43.2 4.9 -4.4 6.9 74 74 A L H 3X S+ 0 0 4 -4,-0.5 4,-2.4 -5,-0.2 -1,-0.3 0.847 111.9 49.1 -64.6 -31.8 3.5 -1.8 4.5 75 75 A A H