==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RNA BINDING PROTEIN 26-OCT-99 1D9A . COMPND 2 MOLECULE: HU ANTIGEN C; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR M.INOUE,Y.MUTO,H.SAKAMOTO,S.YOKOYAMA,RIKEN STRUCTURAL . 85 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6204.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 62.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 15 17.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 10.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 8.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 128 0, 0.0 2,-0.3 0, 0.0 50,-0.1 0.000 360.0 360.0 360.0 147.1 -3.7 10.3 8.8 2 2 A A + 0 0 3 48,-0.4 48,-2.1 49,-0.1 2,-0.1 -0.474 360.0 152.1-116.4 63.0 -4.4 8.8 5.4 3 3 A N - 0 0 20 -2,-0.3 77,-0.4 46,-0.3 2,-0.3 -0.409 29.3-146.4 -86.1 167.8 -1.8 6.0 5.2 4 4 A L - 0 0 0 75,-0.2 44,-0.6 -2,-0.1 2,-0.4 -0.944 10.4-158.5-134.5 157.1 -2.3 2.8 3.2 5 5 A Y E +AB 47 78A 78 73,-1.6 73,-2.0 -2,-0.3 2,-0.8 -0.795 13.1 176.6-138.2 94.0 -1.2 -0.9 3.6 6 6 A V E +AB 46 77A 6 40,-2.1 40,-1.5 -2,-0.4 71,-0.3 -0.823 12.7 173.5-102.0 103.6 -1.2 -2.9 0.3 7 7 A S E + B 0 76A 25 69,-1.4 69,-1.0 -2,-0.8 38,-0.1 -0.508 50.8 58.5-101.6 174.2 0.1 -6.4 1.0 8 8 A G S S+ 0 0 11 1,-0.2 -1,-0.2 67,-0.2 64,-0.1 0.835 72.9 156.9 77.4 31.0 0.3 -9.5 -1.3 9 9 A L - 0 0 22 35,-0.7 -1,-0.2 -3,-0.2 66,-0.0 -0.589 41.6-114.3 -90.0 155.7 2.5 -7.6 -3.8 10 10 A P > - 0 0 67 0, 0.0 3,-1.2 0, 0.0 -1,-0.1 -0.211 30.4-104.9 -77.8 171.5 4.8 -9.3 -6.3 11 11 A K T 3 S+ 0 0 178 1,-0.2 33,-0.1 -2,-0.0 -2,-0.0 0.724 119.4 65.5 -73.4 -17.4 8.6 -9.0 -6.2 12 12 A T T 3 S+ 0 0 108 2,-0.1 2,-0.8 5,-0.0 -1,-0.2 0.597 70.4 118.5 -79.7 -7.6 8.4 -6.6 -9.2 13 13 A M < - 0 0 34 -3,-1.2 2,-0.2 4,-0.1 31,-0.1 -0.413 51.0-166.2 -61.7 103.9 6.5 -4.1 -7.0 14 14 A S > - 0 0 72 -2,-0.8 4,-1.9 1,-0.1 5,-0.2 -0.597 27.9-119.5 -91.2 155.2 8.9 -1.2 -7.0 15 15 A Q H >> S+ 0 0 90 1,-0.2 4,-1.2 2,-0.2 3,-0.5 0.982 117.2 36.3 -58.6 -56.3 8.6 1.7 -4.6 16 16 A K H 3> S+ 0 0 149 1,-0.2 4,-2.2 2,-0.2 5,-0.3 0.854 110.0 64.4 -67.7 -28.4 8.1 4.4 -7.3 17 17 A E H 3> S+ 0 0 93 1,-0.3 4,-1.0 2,-0.2 -1,-0.2 0.906 106.8 43.6 -60.5 -33.8 6.1 1.8 -9.2 18 18 A M H > S- 0 0 131 1,-0.1 4,-1.2 -50,-0.1 3,-0.5 -0.786 78.9-130.2-106.6 151.1 -6.5 13.4 2.3 53 53 A R H 3> S+ 0 0 168 -2,-0.3 4,-1.6 1,-0.2 5,-0.2 0.810 109.7 61.3 -68.7 -25.2 -8.2 10.3 3.6 54 54 A I H 3> S+ 0 0 103 1,-0.2 4,-2.2 2,-0.2 5,-0.3 0.832 100.5 53.7 -70.8 -28.1 -10.7 10.6 0.8 55 55 A E H <> S+ 0 0 57 -3,-0.5 4,-1.0 1,-0.2 -1,-0.2 0.868 112.5 43.3 -74.0 -33.0 -7.8 10.2 -1.7 56 56 A A H X S+ 0 0 0 -4,-1.2 4,-1.7 3,-0.2 -2,-0.2 0.739 115.9 49.6 -83.3 -21.4 -6.7 7.0 0.0 57 57 A E H X S+ 0 0 104 -4,-1.6 4,-1.2 2,-0.2 5,-0.2 0.958 112.0 43.7 -80.9 -55.3 -10.3 5.7 0.3 58 58 A E H X S+ 0 0 139 -4,-2.2 4,-1.2 1,-0.2 -2,-0.2 0.882 120.5 45.2 -57.3 -35.3 -11.4 6.3 -3.3 59 59 A A H >X S+ 0 0 0 -4,-1.0 4,-0.9 -5,-0.3 3,-0.6 0.953 101.6 62.5 -74.8 -49.4 -8.0 4.8 -4.4 60 60 A I H 3X S+ 0 0 19 -4,-1.7 4,-1.2 1,-0.3 -1,-0.2 0.796 109.1 46.8 -47.1 -24.6 -8.1 1.8 -2.0 61 61 A K H 3< S+ 0 0 182 -4,-1.2 -1,-0.3 1,-0.2 -2,-0.2 0.833 109.7 49.7 -88.5 -34.4 -11.2 0.8 -4.0 62 62 A G H << S+ 0 0 41 -4,-1.2 -2,-0.2 -3,-0.6 -1,-0.2 0.376 126.8 26.8 -85.4 8.5 -9.8 1.4 -7.5 63 63 A L H < S+ 0 0 32 -4,-0.9 -3,-0.2 -3,-0.2 -2,-0.2 0.586 86.8 105.8-133.6 -46.8 -6.7 -0.7 -6.6 64 64 A N < - 0 0 61 -4,-1.2 12,-0.2 -5,-0.5 -58,-0.0 -0.052 44.9-178.7 -39.3 136.1 -7.5 -3.3 -3.9 65 65 A G - 0 0 34 10,-0.4 2,-0.3 1,-0.2 11,-0.2 0.638 34.2 -71.6-108.0 -93.2 -7.7 -6.7 -5.6 66 66 A Q - 0 0 128 9,-1.2 -1,-0.2 2,-0.0 0, 0.0 -0.972 25.6-151.5-160.6 173.3 -8.5 -9.8 -3.4 67 67 A K - 0 0 117 -2,-0.3 4,-0.3 4,-0.1 -59,-0.0 -0.692 13.3-166.0-160.8 102.3 -7.1 -12.1 -0.7 68 68 A P > - 0 0 75 0, 0.0 3,-1.4 0, 0.0 5,-0.1 -0.057 56.7 -68.3 -77.2-177.5 -8.2 -15.8 -0.3 69 69 A L T 3 S+ 0 0 189 1,-0.3 2,-0.8 2,-0.1 0, 0.0 0.885 140.6 55.0 -42.6 -40.7 -7.5 -17.9 2.7 70 70 A G T > S- 0 0 51 2,-0.0 3,-0.9 0, 0.0 -1,-0.3 -0.150 85.1-175.4 -86.9 44.0 -3.8 -17.7 1.7 71 71 A A T < + 0 0 57 -3,-1.4 -63,-0.1 -2,-0.8 -4,-0.1 -0.150 57.7 74.5 -43.0 105.8 -4.1 -13.9 1.7 72 72 A A T 3 S+ 0 0 70 -64,-0.1 -1,-0.2 -65,-0.1 4,-0.1 0.203 78.1 63.4 171.8 -26.5 -0.6 -13.1 0.3 73 73 A E S < S+ 0 0 169 -3,-0.9 -2,-0.1 -5,-0.1 -6,-0.1 0.922 98.6 52.0 -85.1 -46.5 -0.4 -13.8 -3.4 74 74 A P S S- 0 0 14 0, 0.0 2,-0.2 0, 0.0 -7,-0.1 -0.078 95.7 -91.2 -79.4-177.6 -3.0 -11.3 -4.7 75 75 A I + 0 0 58 -12,-0.1 -9,-1.2 2,-0.0 -10,-0.4 -0.645 35.6 177.2 -97.2 157.5 -3.1 -7.5 -3.9 76 76 A T E -B 7 0A 11 -69,-1.0 2,-1.7 -2,-0.2 -69,-1.4 -0.511 7.0-174.6-159.7 82.9 -4.9 -5.9 -1.0 77 77 A V E +B 6 0A 0 -71,-0.3 2,-0.3 -17,-0.2 -71,-0.3 -0.567 28.2 155.5 -83.2 84.6 -4.5 -2.1 -0.6 78 78 A K E -B 5 0A 120 -73,-2.0 -73,-1.6 -2,-1.7 -2,-0.1 -0.821 54.6 -81.5-110.5 150.8 -6.4 -1.6 2.7 79 79 A F - 0 0 87 -2,-0.3 2,-0.8 -75,-0.2 -75,-0.2 -0.145 49.2-116.4 -47.4 138.3 -5.9 1.2 5.2 80 80 A A - 0 0 8 -77,-0.4 -77,-0.2 1,-0.2 -1,-0.1 -0.691 12.5-149.2 -83.3 109.9 -2.9 0.4 7.4 81 81 A N - 0 0 153 -2,-0.8 4,-0.3 -76,-0.1 -1,-0.2 0.849 34.9-149.8 -46.5 -30.2 -4.2 0.1 11.0 82 82 A N > - 0 0 52 1,-0.2 3,-1.1 2,-0.1 -77,-0.0 0.744 15.7-128.3 59.7 119.0 -0.7 1.4 11.9 83 83 A P T 3 S+ 0 0 133 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.327 108.2 47.4 -78.5 7.6 0.8 0.2 15.2 84 84 A S T 3 0 0 103 -3,-0.1 -2,-0.1 1,-0.0 -3,-0.0 0.154 360.0 360.0-133.6 18.6 1.4 3.9 16.1 85 85 A Q < 0 0 176 -3,-1.1 -1,-0.0 -4,-0.3 0, 0.0 -0.642 360.0 360.0 -90.2 360.0 -1.9 5.5 15.3