==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 13-DEC-05 2DA7 . COMPND 2 MOLECULE: ZINC FINGER HOMEOBOX PROTEIN 1B; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.OHNISHI,T.KIGAWA,M.SATO,S.KOSHIBA,M.INOUE,S.YOKOYAMA, . 71 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5924.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 63.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 15.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 46.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 103 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-154.6 -1.5 12.6 16.4 2 2 A S + 0 0 138 1,-0.2 2,-0.2 0, 0.0 0, 0.0 0.869 360.0 137.0 52.7 39.3 -4.1 12.3 19.1 3 3 A S + 0 0 120 2,-0.0 -1,-0.2 0, 0.0 2,-0.2 -0.654 19.6 146.3-111.7 169.0 -4.2 8.5 18.4 4 4 A G - 0 0 74 -2,-0.2 2,-0.3 -3,-0.1 0, 0.0 -0.515 19.4-163.3 160.8 129.3 -4.3 5.5 20.6 5 5 A S - 0 0 120 -2,-0.2 3,-0.1 1,-0.1 -2,-0.0 -0.947 13.1-162.6-129.1 149.3 -5.8 2.0 20.6 6 6 A S S S- 0 0 139 -2,-0.3 2,-0.2 1,-0.3 -1,-0.1 0.764 73.8 -33.5 -97.2 -33.4 -6.4 -0.6 23.4 7 7 A G - 0 0 58 0, 0.0 -1,-0.3 0, 0.0 0, 0.0 -0.799 51.8-124.0 173.6 143.3 -6.8 -3.7 21.2 8 8 A S - 0 0 112 -2,-0.2 -3,-0.0 1,-0.1 0, 0.0 -0.763 28.8-122.4-101.6 145.1 -8.1 -4.9 17.8 9 9 A P - 0 0 109 0, 0.0 2,-0.4 0, 0.0 -1,-0.1 0.074 31.4 -96.3 -69.7-173.9 -10.8 -7.6 17.3 10 10 A I - 0 0 149 4,-0.0 4,-0.1 0, 0.0 0, 0.0 -0.905 28.9-153.6-114.0 139.2 -10.3 -10.8 15.3 11 11 A N - 0 0 48 -2,-0.4 4,-0.3 1,-0.1 5,-0.0 -0.892 11.0-149.4-113.7 141.1 -11.4 -11.4 11.7 12 12 A P S S+ 0 0 111 0, 0.0 4,-0.2 0, 0.0 -1,-0.1 0.952 97.5 5.9 -69.8 -52.3 -12.4 -14.7 10.1 13 13 A Y S > S+ 0 0 160 2,-0.1 3,-2.5 1,-0.1 4,-0.5 0.863 119.1 69.5 -98.0 -53.3 -11.2 -13.9 6.6 14 14 A K T >> S+ 0 0 90 1,-0.3 3,-2.1 2,-0.2 4,-1.9 0.755 82.8 84.0 -37.2 -28.3 -9.6 -10.5 6.9 15 15 A D H 3> S+ 0 0 79 1,-0.3 4,-2.5 -4,-0.3 -1,-0.3 0.899 80.8 58.5 -43.5 -51.5 -7.0 -12.5 8.8 16 16 A H H <> S+ 0 0 68 -3,-2.5 4,-1.0 1,-0.2 -1,-0.3 0.812 113.5 41.2 -50.3 -32.0 -5.3 -13.4 5.5 17 17 A M H X> S+ 0 0 39 -3,-2.1 4,-2.0 -4,-0.5 3,-0.5 0.972 110.5 50.7 -80.2 -67.4 -4.9 -9.7 4.9 18 18 A S H 3X S+ 0 0 50 -4,-1.9 4,-1.7 1,-0.3 5,-0.2 0.865 108.3 57.1 -36.7 -51.5 -3.9 -8.4 8.3 19 19 A V H >X S+ 0 0 31 -4,-2.5 4,-1.8 1,-0.3 3,-1.2 0.938 105.8 47.6 -47.2 -58.3 -1.2 -11.0 8.4 20 20 A L H X S+ 0 0 69 -4,-1.8 4,-2.6 2,-0.2 3,-0.6 0.944 116.4 43.8 -71.3 -49.9 5.0 -8.9 7.7 24 24 A Y H 3< S+ 0 0 24 -4,-2.1 -2,-0.2 1,-0.2 -3,-0.2 0.925 104.1 64.3 -61.4 -46.4 5.4 -5.9 5.4 25 25 A A H 3< S+ 0 0 77 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.820 113.2 36.3 -46.7 -34.4 5.0 -3.5 8.3 26 26 A M H << S+ 0 0 148 -4,-0.7 2,-0.4 -3,-0.6 -1,-0.2 0.896 128.2 31.6 -86.3 -47.0 8.2 -5.0 9.6 27 27 A N < - 0 0 35 -4,-2.6 -1,-0.3 1,-0.2 0, 0.0 -0.952 59.2-162.9-118.4 132.4 10.1 -5.6 6.4 28 28 A M S S+ 0 0 99 -2,-0.4 -1,-0.2 1,-0.3 29,-0.1 0.957 87.7 23.9 -74.3 -53.7 9.7 -3.4 3.2 29 29 A E S S- 0 0 142 -5,-0.0 -1,-0.3 28,-0.0 25,-0.0 -0.893 81.1-157.6-120.8 102.0 11.2 -5.9 0.7 30 30 A P - 0 0 23 0, 0.0 2,-0.3 0, 0.0 -6,-0.0 -0.142 16.8-115.1 -69.7 168.7 11.0 -9.6 1.8 31 31 A N >> - 0 0 85 1,-0.1 4,-2.1 0, 0.0 3,-0.8 -0.764 31.1 -99.7-108.6 154.8 13.2 -12.3 0.5 32 32 A S H 3> S+ 0 0 93 -2,-0.3 4,-1.7 1,-0.3 5,-0.1 0.809 126.3 55.5 -36.8 -38.2 12.3 -15.4 -1.6 33 33 A D H 3> S+ 0 0 125 2,-0.2 4,-1.6 1,-0.1 -1,-0.3 0.957 113.5 37.2 -62.8 -52.8 12.5 -17.3 1.7 34 34 A E H <> S+ 0 0 82 -3,-0.8 4,-3.2 2,-0.2 5,-0.3 0.980 109.9 60.1 -63.8 -58.9 9.9 -15.0 3.4 35 35 A L H X S+ 0 0 11 -4,-2.1 4,-1.9 1,-0.2 5,-0.2 0.857 106.4 50.3 -35.0 -52.5 7.7 -14.5 0.4 36 36 A L H >X S+ 0 0 75 -4,-1.7 4,-1.3 -5,-0.3 3,-0.7 0.974 113.5 42.1 -53.0 -64.0 7.1 -18.2 0.4 37 37 A K H >X S+ 0 0 116 -4,-1.6 4,-3.0 1,-0.3 3,-1.3 0.918 107.8 62.3 -50.0 -49.9 6.2 -18.6 4.0 38 38 A I H 3X S+ 0 0 2 -4,-3.2 4,-0.8 1,-0.3 -1,-0.3 0.880 109.1 41.2 -43.6 -47.0 4.1 -15.4 3.9 39 39 A S H S+ 0 0 6 -4,-1.9 4,-1.3 -3,-0.7 5,-0.8 0.691 116.2 53.2 -76.2 -19.0 1.8 -17.1 1.4 40 40 A I H <<5S+ 0 0 83 -4,-1.3 -2,-0.2 -3,-1.3 -3,-0.2 0.955 99.9 55.6 -79.6 -56.2 2.1 -20.3 3.4 41 41 A A H <5S+ 0 0 61 -4,-3.0 -2,-0.2 1,-0.3 -1,-0.2 0.809 122.2 33.3 -46.3 -32.9 1.0 -19.0 6.8 42 42 A V H <5S- 0 0 41 -4,-0.8 -1,-0.3 -5,-0.4 -2,-0.2 0.759 110.3-122.2 -94.6 -31.3 -2.1 -17.8 5.1 43 43 A G T <5 + 0 0 65 -4,-1.3 -3,-0.2 1,-0.3 -4,-0.1 0.455 65.1 134.8 101.4 3.2 -2.4 -20.6 2.5 44 44 A L < - 0 0 52 -5,-0.8 2,-0.4 -6,-0.2 -1,-0.3 -0.465 66.5 -89.6 -84.7 157.4 -2.3 -18.3 -0.5 45 45 A P >> - 0 0 76 0, 0.0 3,-2.1 0, 0.0 4,-1.5 -0.520 27.6-135.1 -69.8 119.9 -0.1 -19.0 -3.6 46 46 A Q H 3> S+ 0 0 52 -2,-0.4 4,-2.6 1,-0.3 5,-0.1 0.820 105.7 65.5 -41.7 -36.9 3.3 -17.4 -3.3 47 47 A E H 3> S+ 0 0 148 2,-0.2 4,-1.3 1,-0.2 -1,-0.3 0.902 104.6 43.1 -54.6 -44.1 2.8 -16.2 -6.8 48 48 A F H <> S+ 0 0 102 -3,-2.1 4,-2.1 2,-0.2 3,-0.3 0.972 111.3 51.9 -67.1 -56.1 -0.0 -14.0 -5.7 49 49 A V H X S+ 0 0 0 -4,-1.5 4,-2.2 1,-0.2 5,-0.2 0.872 103.4 62.4 -48.2 -42.1 1.6 -12.7 -2.5 50 50 A K H X S+ 0 0 71 -4,-2.6 4,-2.2 -5,-0.3 3,-0.5 0.952 105.6 42.8 -49.2 -60.3 4.6 -11.7 -4.7 51 51 A E H X S+ 0 0 118 -4,-1.3 4,-2.8 -3,-0.3 -1,-0.2 0.905 108.8 60.3 -54.4 -44.8 2.7 -9.3 -6.8 52 52 A W H X S+ 0 0 19 -4,-2.1 4,-1.2 1,-0.2 -1,-0.2 0.892 108.9 43.3 -50.7 -44.4 0.9 -7.9 -3.7 53 53 A F H X S+ 0 0 6 -4,-2.2 4,-0.9 -3,-0.5 -1,-0.2 0.886 110.6 55.5 -70.0 -40.1 4.3 -6.9 -2.3 54 54 A E H >X S+ 0 0 85 -4,-2.2 3,-1.0 -5,-0.2 4,-0.8 0.915 102.0 57.3 -58.9 -45.1 5.5 -5.5 -5.6 55 55 A Q H >X S+ 0 0 83 -4,-2.8 3,-1.8 1,-0.3 4,-1.1 0.921 95.3 64.2 -52.0 -49.4 2.5 -3.2 -5.8 56 56 A R H 3X S+ 0 0 75 -4,-1.2 4,-2.9 1,-0.3 3,-0.4 0.851 96.0 59.7 -43.1 -41.2 3.4 -1.6 -2.5 57 57 A K H