==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 17-NOV-99 1DF6 . COMPND 2 MOLECULE: CYCLOVIOLACIN O1; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ODORATA; . AUTHOR D.J.CRAIK,N.L.DALY,T.BOND,C.WAINE . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2167.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 46.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 51 0, 0.0 20,-0.3 0, 0.0 3,-0.2 0.000 360.0 360.0 360.0 147.3 -3.7 -0.7 -5.3 2 2 A a + 0 0 5 18,-1.0 19,-0.2 28,-0.4 18,-0.2 -0.196 360.0 159.5-104.8 36.1 -5.2 -1.9 -2.1 3 3 A V S S- 0 0 90 17,-0.4 -1,-0.2 1,-0.2 4,-0.1 0.730 86.4 -22.9 -24.8 -55.9 -8.8 -1.6 -3.4 4 4 A Y S S+ 0 0 223 -3,-0.2 -1,-0.2 2,-0.2 -2,-0.1 0.529 138.5 57.9-126.5 -55.2 -10.2 -4.0 -0.8 5 5 A I S S- 0 0 107 1,-0.1 -1,-0.1 -4,-0.1 0, 0.0 -0.307 94.7 -99.7 -71.0 158.2 -7.1 -6.0 0.1 6 6 A P - 0 0 82 0, 0.0 -2,-0.2 0, 0.0 -1,-0.1 0.075 42.8 -97.3 -55.2-174.9 -3.9 -4.3 1.5 7 7 A b + 0 0 2 8,-0.2 -2,-0.1 -5,-0.1 9,-0.1 0.947 46.7 174.2 -77.7 -52.2 -1.0 -3.7 -0.9 8 8 A T + 0 0 94 1,-0.2 -1,-0.0 22,-0.1 22,-0.0 0.746 67.9 68.0 45.8 33.4 1.1 -6.9 -0.2 9 9 A V S S+ 0 0 81 6,-0.1 -1,-0.2 20,-0.1 21,-0.1 0.482 117.3 6.7-141.3 -40.3 3.5 -5.9 -2.9 10 10 A T S >>>S+ 0 0 20 5,-0.2 3,-1.9 19,-0.1 5,-1.0 0.498 102.0 92.4-124.2 -17.9 5.3 -2.7 -1.9 11 11 A A G >45S+ 0 0 45 1,-0.3 3,-1.0 3,-0.2 5,-0.1 0.727 71.3 80.8 -50.8 -23.6 4.1 -2.4 1.8 12 12 A L G 345S+ 0 0 148 1,-0.3 -1,-0.3 2,-0.2 -2,-0.1 0.849 97.1 38.5 -51.9 -42.7 7.2 -4.4 2.6 13 13 A L G <45S- 0 0 118 -3,-1.9 -1,-0.3 2,-0.0 -2,-0.2 0.504 139.0 -77.4 -89.4 -6.6 9.4 -1.3 2.4 14 14 A G T <<5S+ 0 0 27 -3,-1.0 2,-2.1 -4,-0.5 -3,-0.2 0.575 73.4 155.2 118.5 20.5 6.7 1.0 4.1 15 15 A c < - 0 0 0 -5,-1.0 9,-0.3 9,-0.1 -5,-0.2 -0.503 32.1-157.7 -81.3 75.6 4.3 1.6 1.2 16 16 A S E -A 23 0A 76 -2,-2.1 2,-1.6 7,-1.6 7,-1.6 -0.328 24.9-109.9 -57.2 124.0 1.3 2.3 3.4 17 17 A a E +A 22 0A 54 5,-0.2 2,-0.5 -2,-0.1 3,-0.5 -0.377 45.8 178.1 -62.5 85.7 -2.0 1.8 1.7 18 18 A S E > S-A 21 0A 47 3,-2.3 3,-1.4 -2,-1.6 -16,-0.1 -0.836 73.4 -13.0 -94.0 125.6 -3.2 5.4 1.4 19 19 A N T 3 S- 0 0 104 -2,-0.5 -1,-0.2 1,-0.3 3,-0.1 0.863 129.7 -58.0 46.8 43.4 -6.6 5.7 -0.5 20 20 A R T 3 S+ 0 0 139 -3,-0.5 -18,-1.0 1,-0.2 -17,-0.4 0.826 120.0 111.9 56.8 36.2 -6.1 2.1 -1.6 21 21 A V E < S-A 18 0A 38 -3,-1.4 -3,-2.3 -20,-0.3 -1,-0.2 -0.986 78.8-111.6-136.1 122.1 -2.7 3.1 -3.2 22 22 A b E -A 17 0A 0 8,-1.9 6,-1.6 7,-0.4 2,-0.4 -0.379 46.4-179.0 -57.5 122.1 0.6 1.8 -1.7 23 23 A Y E +AB 16 27A 80 -7,-1.6 -7,-1.6 4,-0.2 2,-0.0 -0.977 30.6 167.7-135.5 124.1 2.3 5.0 -0.3 24 24 A N S S- 0 0 68 2,-2.0 2,-0.4 -2,-0.4 -9,-0.1 -0.524 90.1 -61.9-127.9 59.5 5.7 5.5 1.4 25 25 A G S S+ 0 0 80 -9,-0.1 -10,-0.1 -11,-0.1 -2,-0.0 -0.179 141.1 36.2 88.5 -39.9 5.8 9.3 1.2 26 26 A I S S- 0 0 128 -2,-0.4 -2,-2.0 1,-0.1 0, 0.0 -0.961 108.1 -91.8-139.4 146.3 5.7 8.8 -2.6 27 27 A P B -B 23 0A 61 0, 0.0 -4,-0.2 0, 0.0 -1,-0.1 0.087 20.8-161.8 -64.5 172.9 3.7 5.9 -4.2 28 28 A c - 0 0 31 -6,-1.6 -5,-0.1 1,-0.4 -13,-0.1 -0.002 44.9-114.3-141.7 23.2 5.0 2.5 -5.1 29 29 A A 0 0 74 -7,-0.3 -7,-0.4 1,-0.1 -1,-0.4 -0.012 360.0 360.0 63.7-176.2 2.2 1.5 -7.6 30 30 A E 0 0 94 -9,-0.1 -8,-1.9 -3,-0.1 -28,-0.4 0.555 360.0 360.0 66.1 360.0 -0.3 -1.3 -7.0