==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 24-APR-06 2DMT . COMPND 2 MOLECULE: HOMEOBOX PROTEIN BARH-LIKE 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.OHNISHI,M.YONEYAMA,S.KOSHIBA,M.INOUE,T.KIGAWA,S.YOKOYAMA, . 80 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7657.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 52.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 41.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 134 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 171.9 35.4 9.8 -18.9 2 2 A S + 0 0 128 2,-0.0 2,-0.3 0, 0.0 0, 0.0 -0.691 360.0 157.8-166.8 106.8 32.8 7.1 -18.9 3 3 A S - 0 0 116 -2,-0.2 0, 0.0 1,-0.1 0, 0.0 -0.916 46.7 -79.2-131.9 158.0 29.0 7.6 -18.2 4 4 A G - 0 0 78 -2,-0.3 -1,-0.1 1,-0.1 3,-0.1 0.015 31.4-164.0 -49.6 160.6 25.9 5.7 -19.1 5 5 A S - 0 0 127 1,-0.1 2,-0.2 0, 0.0 -1,-0.1 0.737 65.5 -18.6-114.7 -52.4 24.4 6.0 -22.6 6 6 A S - 0 0 114 2,-0.0 2,-0.4 0, 0.0 -1,-0.1 -0.808 50.0-179.9-165.4 118.8 20.8 4.7 -22.5 7 7 A G + 0 0 74 -2,-0.2 2,-0.3 -3,-0.1 -3,-0.0 -0.698 19.0 166.4-125.0 80.9 19.1 2.5 -19.9 8 8 A G - 0 0 65 -2,-0.4 -2,-0.0 1,-0.1 0, 0.0 -0.689 39.9-103.8 -96.5 148.8 15.5 1.9 -20.9 9 9 A E - 0 0 140 -2,-0.3 3,-0.2 1,-0.1 -1,-0.1 -0.375 19.6-132.8 -68.8 144.0 13.2 -0.7 -19.4 10 10 A P S S- 0 0 139 0, 0.0 -1,-0.1 0, 0.0 2,-0.1 0.678 80.9 -36.9 -69.8 -17.9 12.5 -3.9 -21.5 11 11 A G - 0 0 56 2,-0.0 2,-0.3 0, 0.0 -3,-0.0 -0.374 61.4-170.4 154.8 124.1 8.8 -3.5 -20.8 12 12 A T - 0 0 121 -3,-0.2 2,-0.3 -2,-0.1 -3,-0.0 -0.816 2.7-165.9-126.6 167.1 6.5 -2.4 -18.0 13 13 A K - 0 0 191 -2,-0.3 2,-0.4 2,-0.0 -2,-0.0 -0.994 6.9-151.1-152.6 152.4 2.8 -2.4 -17.2 14 14 A A - 0 0 106 -2,-0.3 2,-0.3 2,-0.0 -2,-0.0 -0.984 8.1-158.5-130.5 139.2 0.4 -0.8 -14.7 15 15 A K - 0 0 189 -2,-0.4 2,-0.4 2,-0.0 -2,-0.0 -0.869 4.8-150.9-116.5 149.9 -2.9 -2.2 -13.3 16 16 A K - 0 0 188 -2,-0.3 -2,-0.0 2,-0.0 0, 0.0 -0.967 12.3-176.2-122.9 134.9 -5.9 -0.3 -11.8 17 17 A G + 0 0 53 -2,-0.4 2,-2.4 2,-0.0 -1,-0.0 -0.258 15.7 164.3-122.1 46.2 -8.3 -1.6 -9.2 18 18 A R + 0 0 234 2,-0.1 2,-0.5 1,-0.0 -2,-0.0 -0.396 23.4 146.1 -65.7 79.4 -10.7 1.3 -8.9 19 19 A R - 0 0 159 -2,-2.4 2,-0.9 3,-0.0 3,-0.3 -0.978 44.5-155.0-125.2 124.1 -13.4 -0.7 -7.1 20 20 A S S S+ 0 0 132 -2,-0.5 -2,-0.1 1,-0.2 3,-0.0 -0.297 78.6 82.1 -89.9 50.4 -15.7 0.7 -4.4 21 21 A R + 0 0 182 -2,-0.9 -1,-0.2 2,-0.0 0, 0.0 0.730 58.1 91.9-115.6 -55.6 -16.3 -2.7 -2.8 22 22 A T - 0 0 92 -3,-0.3 2,-0.4 1,-0.1 -3,-0.0 -0.194 57.4-172.4 -48.1 124.9 -13.4 -3.5 -0.5 23 23 A V - 0 0 122 -3,-0.0 2,-0.4 2,-0.0 -1,-0.1 -0.986 11.5-156.5-129.1 136.0 -14.3 -2.3 3.0 24 24 A F - 0 0 39 -2,-0.4 2,-0.2 4,-0.0 -2,-0.0 -0.905 18.5-125.0-113.5 138.6 -12.1 -2.1 6.1 25 25 A T > - 0 0 76 -2,-0.4 4,-2.7 1,-0.1 5,-0.4 -0.533 29.8-108.9 -80.7 145.1 -13.3 -2.0 9.7 26 26 A E H > S+ 0 0 167 1,-0.3 4,-2.2 2,-0.2 -1,-0.1 0.828 123.4 49.4 -37.4 -41.6 -12.3 0.8 12.0 27 27 A L H > S+ 0 0 123 2,-0.2 4,-1.8 1,-0.2 -1,-0.3 0.967 111.6 45.4 -65.4 -54.8 -10.2 -1.8 13.8 28 28 A Q H > S+ 0 0 40 1,-0.2 4,-2.7 2,-0.2 3,-0.3 0.942 114.3 48.9 -54.1 -52.7 -8.5 -3.2 10.6 29 29 A L H X S+ 0 0 36 -4,-2.7 4,-3.0 1,-0.2 5,-0.3 0.923 105.4 58.6 -54.1 -48.4 -7.8 0.3 9.3 30 30 A M H X S+ 0 0 115 -4,-2.2 4,-1.6 -5,-0.4 -1,-0.2 0.899 112.1 40.6 -48.6 -46.8 -6.4 1.4 12.6 31 31 A G H X S+ 0 0 16 -4,-1.8 4,-2.7 -3,-0.3 -1,-0.2 0.908 111.9 54.9 -70.6 -42.9 -3.8 -1.3 12.3 32 32 A L H X S+ 0 0 0 -4,-2.7 4,-2.1 1,-0.2 5,-0.3 0.897 110.6 46.6 -57.1 -42.6 -3.2 -0.8 8.6 33 33 A E H X S+ 0 0 91 -4,-3.0 4,-2.1 -5,-0.2 -1,-0.2 0.874 110.9 53.1 -67.9 -38.2 -2.4 2.8 9.2 34 34 A K H X S+ 0 0 127 -4,-1.6 4,-2.0 -5,-0.3 -2,-0.2 0.952 114.5 40.1 -62.1 -51.6 -0.1 2.0 12.2 35 35 A R H X S+ 0 0 89 -4,-2.7 4,-3.1 2,-0.2 3,-0.2 0.992 116.5 47.3 -61.3 -65.2 2.0 -0.5 10.2 36 36 A F H < S+ 0 0 10 -4,-2.1 -2,-0.2 1,-0.2 -3,-0.2 0.909 111.2 52.9 -41.6 -57.1 2.2 1.5 6.9 37 37 A E H < S+ 0 0 129 -4,-2.1 3,-0.4 -5,-0.3 -1,-0.2 0.922 113.1 43.4 -46.1 -54.5 3.1 4.7 8.8 38 38 A K H < S+ 0 0 167 -4,-2.0 2,-0.5 1,-0.3 -1,-0.2 0.936 133.2 19.6 -58.8 -49.2 6.0 2.9 10.6 39 39 A Q < - 0 0 87 -4,-3.1 -1,-0.3 -5,-0.2 -2,-0.1 -0.868 66.9-158.9-129.2 98.8 7.1 1.1 7.4 40 40 A K S S+ 0 0 74 -2,-0.5 2,-0.4 -3,-0.4 -1,-0.1 0.851 90.7 27.6 -39.2 -44.7 6.0 2.6 4.2 41 41 A Y S S- 0 0 103 -3,-0.1 -1,-0.2 -6,-0.1 2,-0.0 -0.977 81.1-150.2-128.6 121.2 6.6 -0.8 2.6 42 42 A L - 0 0 15 -2,-0.4 2,-0.1 1,-0.1 -2,-0.0 -0.257 23.1-105.7 -80.4 171.8 6.5 -4.0 4.5 43 43 A S > - 0 0 56 1,-0.1 4,-2.3 -2,-0.0 5,-0.2 -0.374 33.2 -97.9 -92.9 174.4 8.5 -7.2 3.8 44 44 A T H > S+ 0 0 114 1,-0.2 4,-0.7 2,-0.2 -1,-0.1 0.968 124.3 28.9 -54.9 -59.1 7.4 -10.5 2.2 45 45 A P H >> S+ 0 0 76 0, 0.0 4,-2.4 0, 0.0 3,-0.6 0.909 117.7 59.3 -69.8 -44.3 6.9 -12.3 5.5 46 46 A D H 3> S+ 0 0 75 1,-0.3 4,-2.2 2,-0.2 5,-0.2 0.956 100.0 54.4 -49.0 -62.3 6.0 -9.2 7.5 47 47 A R H 3X S+ 0 0 44 -4,-2.3 4,-2.1 1,-0.2 -1,-0.3 0.821 111.2 49.7 -42.4 -36.5 3.0 -8.3 5.4 48 48 A I H X>S+ 0 0 3 -4,-2.2 4,-2.6 2,-0.2 3,-1.2 0.976 105.0 55.7 -65.8 -57.3 0.2 -8.6 9.9 51 51 A A H 3X5S+ 0 0 5 -4,-2.1 4,-0.6 1,-0.3 5,-0.4 0.748 111.6 48.8 -47.7 -24.3 -2.6 -9.9 7.7 52 52 A E H 3<5S+ 0 0 154 -4,-1.6 -1,-0.3 3,-0.2 -2,-0.2 0.787 109.6 50.0 -86.6 -31.5 -2.8 -12.7 10.3 53 53 A S H <<5S+ 0 0 91 -4,-1.3 -2,-0.2 -3,-1.2 -3,-0.1 0.913 124.6 28.1 -73.0 -44.6 -2.9 -10.3 13.3 54 54 A L H <5S- 0 0 43 -4,-2.6 -3,-0.2 -5,-0.1 -2,-0.2 0.704 110.1-118.6 -88.7 -23.1 -5.7 -8.2 11.9 55 55 A G << + 0 0 58 -4,-0.6 -3,-0.2 -5,-0.6 -4,-0.2 0.673 66.9 135.7 92.4 19.8 -7.2 -11.0 9.9 56 56 A L - 0 0 16 -5,-0.4 2,-0.4 -6,-0.3 -1,-0.2 -0.367 58.4 -98.7 -93.2 175.5 -6.7 -9.3 6.5 57 57 A S >> - 0 0 83 1,-0.1 3,-2.0 -2,-0.1 4,-0.8 -0.823 25.9-121.4-100.4 133.6 -5.5 -10.7 3.2 58 58 A Q H 3> S+ 0 0 111 -2,-0.4 4,-2.0 1,-0.3 5,-0.1 0.825 115.7 59.7 -35.4 -43.2 -1.8 -10.2 2.1 59 59 A L H 3> S+ 0 0 101 1,-0.2 4,-3.2 2,-0.2 5,-0.3 0.912 95.7 62.3 -55.3 -45.7 -3.3 -8.6 -1.0 60 60 A Q H <> S+ 0 0 40 -3,-2.0 4,-2.9 1,-0.2 5,-0.5 0.940 106.2 42.7 -44.3 -64.5 -5.0 -6.0 1.2 61 61 A V H X S+ 0 0 0 -4,-0.8 4,-2.8 1,-0.2 5,-0.3 0.930 115.5 50.6 -49.3 -53.5 -1.8 -4.6 2.6 62 62 A K H X S+ 0 0 97 -4,-2.0 4,-2.0 2,-0.2 -2,-0.2 0.959 121.7 31.4 -50.0 -61.9 -0.1 -4.7 -0.8 63 63 A T H X S+ 0 0 55 -4,-3.2 4,-2.3 2,-0.2 5,-0.3 0.993 118.2 52.5 -61.5 -65.5 -2.9 -2.8 -2.6 64 64 A W H X S+ 0 0 21 -4,-2.9 4,-2.0 -5,-0.3 -1,-0.2 0.850 111.8 51.0 -38.0 -46.1 -4.1 -0.6 0.3 65 65 A Y H >X S+ 0 0 7 -4,-2.8 4,-2.4 -5,-0.5 3,-0.9 0.992 106.4 49.5 -57.7 -69.9 -0.5 0.5 0.6 66 66 A Q H 3X S+ 0 0 105 -4,-2.0 4,-1.5 1,-0.3 -1,-0.2 0.863 112.2 50.9 -36.0 -52.4 0.2 1.4 -3.0 67 67 A N H 3X S+ 0 0 109 -4,-2.3 4,-0.8 1,-0.2 -1,-0.3 0.908 110.2 49.5 -55.4 -45.0 -3.0 3.5 -3.0 68 68 A R H XX S+ 0 0 91 -4,-2.0 4,-2.4 -3,-0.9 3,-0.5 0.932 100.5 64.3 -60.8 -47.8 -1.9 5.2 0.2 69 69 A R H 3X S+ 0 0 92 -4,-2.4 4,-2.9 1,-0.2 -1,-0.2 0.897 92.6 64.1 -41.3 -54.0 1.5 6.0 -1.2 70 70 A M H 3< S+ 0 0 138 -4,-1.5 3,-0.3 1,-0.3 -1,-0.2 0.891 109.9 36.8 -36.2 -62.9 -0.1 8.3 -3.8 71 71 A K H << S+ 0 0 178 -4,-0.8 -1,-0.3 -3,-0.5 -2,-0.2 0.913 112.0 60.6 -59.8 -44.7 -1.4 10.7 -1.2 72 72 A W H < S+ 0 0 123 -4,-2.4 -1,-0.2 2,-0.1 -2,-0.2 0.887 96.6 75.5 -50.1 -43.7 1.7 10.2 0.9 73 73 A K S < S- 0 0 102 -4,-2.9 2,-0.3 -3,-0.3 -3,-0.0 0.008 73.7-145.7 -62.0 175.1 3.8 11.6 -2.0 74 74 A K - 0 0 197 2,-0.0 2,-0.5 0, 0.0 -3,-0.1 -0.940 11.1-169.0-152.4 125.7 3.9 15.3 -2.8 75 75 A S + 0 0 107 -2,-0.3 -2,-0.0 1,-0.0 0, 0.0 -0.961 8.2 173.5-120.4 120.1 4.1 17.1 -6.2 76 76 A G + 0 0 77 -2,-0.5 3,-0.2 1,-0.1 -2,-0.0 -0.693 13.1 155.5-127.8 81.1 4.8 20.8 -6.4 77 77 A P S S- 0 0 128 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 0.894 80.3 -21.5 -69.8 -42.0 5.3 21.9 -10.0 78 78 A S - 0 0 104 2,-0.0 2,-0.7 0, 0.0 0, 0.0 -0.603 58.8-158.6-175.0 107.1 4.3 25.5 -9.4 79 79 A S 0 0 135 -3,-0.2 -3,-0.0 -2,-0.2 0, 0.0 -0.824 360.0 360.0 -96.3 113.7 2.1 26.9 -6.6 80 80 A G 0 0 120 -2,-0.7 -2,-0.0 0, 0.0 0, 0.0 -0.712 360.0 360.0 152.5 360.0 0.5 30.2 -7.5