==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELP . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,M.SATO,S.WATANABE,T.HARADA, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3568.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 51.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 126 0, 0.0 4,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 61.3 -5.0 -25.7 -2.2 2 2 A S + 0 0 129 2,-0.1 3,-0.1 3,-0.0 0, 0.0 0.925 360.0 81.3 -61.8 -46.4 -7.1 -28.2 -0.3 3 3 A S S S- 0 0 104 1,-0.1 2,-0.6 3,-0.0 3,-0.0 0.128 97.7 -87.9 -51.2 174.9 -9.3 -25.4 1.2 4 4 A G - 0 0 60 1,-0.1 -1,-0.1 2,-0.0 -2,-0.1 -0.824 42.7-109.5 -97.5 121.1 -12.1 -23.9 -0.8 5 5 A S + 0 0 100 -2,-0.6 2,-0.3 -4,-0.2 3,-0.1 -0.175 60.6 140.3 -46.9 125.0 -11.2 -21.0 -3.0 6 6 A S + 0 0 102 1,-0.3 -3,-0.0 -3,-0.0 -2,-0.0 -0.958 37.0 35.1-168.3 150.1 -12.8 -17.9 -1.4 7 7 A G - 0 0 76 -2,-0.3 2,-0.7 1,-0.2 -1,-0.3 0.962 53.4-167.7 64.8 90.3 -12.1 -14.2 -0.8 8 8 A R - 0 0 180 -3,-0.1 -1,-0.2 0, 0.0 -3,-0.0 -0.729 13.2-179.7-112.0 81.4 -10.1 -12.8 -3.7 9 9 A A - 0 0 54 -2,-0.7 2,-0.2 1,-0.1 11,-0.1 -0.191 31.2 -96.2 -73.6 169.9 -8.8 -9.4 -2.6 10 10 A M E -A 19 0A 40 9,-1.2 9,-1.3 1,-0.0 2,-0.5 -0.534 30.0-131.7 -88.2 155.5 -6.7 -7.1 -4.7 11 11 A K E -A 18 0A 124 7,-0.2 7,-0.2 -2,-0.2 5,-0.1 -0.924 24.1-111.9-112.2 129.9 -2.9 -6.9 -4.5 12 12 A C - 0 0 6 5,-2.9 5,-0.1 -2,-0.5 6,-0.0 -0.273 16.3-141.2 -58.0 136.9 -1.0 -3.6 -4.2 13 13 A P S S+ 0 0 103 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 0.804 100.0 42.8 -69.7 -30.6 1.0 -2.7 -7.4 14 14 A Y S S+ 0 0 111 3,-0.1 2,-0.2 1,-0.1 16,-0.0 0.968 127.6 4.3 -79.5 -62.0 3.9 -1.4 -5.3 15 15 A C S S- 0 0 33 2,-0.1 2,-0.8 0, 0.0 -1,-0.1 -0.510 85.5 -91.0-115.0-175.6 4.2 -3.9 -2.5 16 16 A D S S+ 0 0 114 -2,-0.2 2,-0.4 -5,-0.1 -5,-0.0 -0.367 74.9 134.9 -95.1 53.8 2.6 -7.2 -1.6 17 17 A F - 0 0 109 -2,-0.8 -5,-2.9 -5,-0.1 2,-0.3 -0.879 44.5-144.3-107.6 134.7 -0.2 -5.7 0.4 18 18 A Y E +A 11 0A 140 -2,-0.4 2,-0.2 -7,-0.2 -7,-0.2 -0.734 25.1 165.2 -98.0 145.0 -3.9 -6.8 0.1 19 19 A F E -A 10 0A 79 -9,-1.3 -9,-1.2 -2,-0.3 7,-0.0 -0.823 44.7 -45.8-144.1-177.9 -6.8 -4.4 0.5 20 20 A M - 0 0 129 -2,-0.2 3,-0.3 -11,-0.1 -1,-0.1 -0.206 61.2-107.3 -54.7 142.4 -10.5 -4.0 -0.1 21 21 A K S S- 0 0 115 1,-0.2 2,-0.4 -12,-0.1 -1,-0.1 0.883 99.4 -7.3 -34.2 -67.3 -11.6 -5.2 -3.6 22 22 A N S S+ 0 0 140 -12,-0.0 2,-0.3 4,-0.0 -1,-0.2 -0.943 86.0 131.0-142.5 117.4 -12.2 -1.7 -4.8 23 23 A G >> - 0 0 40 -2,-0.4 3,-1.7 -3,-0.3 4,-0.8 -0.956 58.1-125.4-165.5 145.0 -12.1 1.4 -2.7 24 24 A S H 3> S+ 0 0 69 -2,-0.3 4,-0.7 1,-0.3 -1,-0.0 0.529 104.8 76.9 -68.8 -4.0 -10.6 4.9 -2.7 25 25 A D H 34 S+ 0 0 133 2,-0.2 4,-0.5 1,-0.1 -1,-0.3 0.731 92.5 50.5 -77.4 -23.2 -9.2 4.0 0.7 26 26 A L H X> S+ 0 0 26 -3,-1.7 3,-2.3 2,-0.2 4,-1.1 0.950 94.9 66.4 -78.7 -54.2 -6.5 1.9 -1.0 27 27 A Q H >X S+ 0 0 83 -4,-0.8 4,-2.0 1,-0.3 3,-1.2 0.828 93.8 64.4 -34.0 -45.9 -5.2 4.4 -3.5 28 28 A R H 3X S+ 0 0 165 -4,-0.7 4,-1.4 1,-0.3 -1,-0.3 0.904 97.7 53.2 -47.3 -48.7 -3.9 6.4 -0.4 29 29 A H H <> S+ 0 0 37 -3,-2.3 4,-0.8 -4,-0.5 -1,-0.3 0.813 108.9 52.7 -58.3 -30.7 -1.6 3.5 0.4 30 30 A I H XX S+ 0 0 32 -3,-1.2 3,-2.1 -4,-1.1 4,-0.9 0.983 103.7 51.0 -69.4 -60.3 -0.2 3.8 -3.1 31 31 A W H 3X>S+ 0 0 150 -4,-2.0 4,-1.9 1,-0.3 5,-1.5 0.776 104.2 63.8 -48.7 -27.4 0.6 7.5 -3.2 32 32 A A H 3<5S+ 0 0 60 -4,-1.4 -1,-0.3 -5,-0.3 -2,-0.2 0.857 91.3 62.4 -66.6 -36.0 2.4 6.8 0.0 33 33 A H H <<5S+ 0 0 71 -3,-2.1 -1,-0.2 -4,-0.8 -2,-0.2 0.850 109.2 42.6 -58.1 -35.5 4.9 4.5 -1.8 34 34 A E H <5S- 0 0 140 -4,-0.9 -2,-0.2 -3,-0.3 -1,-0.2 0.982 126.3 -88.9 -75.1 -63.6 6.0 7.6 -3.9 35 35 A G T <5 + 0 0 65 -4,-1.9 -3,-0.2 2,-0.0 2,-0.1 0.406 62.8 159.7 153.1 39.4 6.2 10.3 -1.2 36 36 A V < 0 0 85 -5,-1.5 0, 0.0 -8,-0.1 0, 0.0 -0.437 360.0 360.0 -81.2 156.6 2.9 12.0 -0.8 37 37 A K 0 0 238 -2,-0.1 -1,-0.1 0, 0.0 -6,-0.0 -0.729 360.0 360.0 -90.8 360.0 1.9 14.0 2.4