==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GLYCOPROTEIN 06-AUG-97 2FN2 . COMPND 2 MOLECULE: FIBRONECTIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR H.STICHT,A.R.PICKFORD,J.R.POTTS,I.D.CAMPBELL . 59 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4264.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 50.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 18.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 11.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 163 0, 0.0 2,-0.4 0, 0.0 57,-0.1 0.000 360.0 360.0 360.0 162.9 -0.5 -0.8 -14.5 2 2 A L - 0 0 96 55,-0.1 2,-1.0 2,-0.1 13,-0.0 -0.860 360.0-169.5-139.1 104.6 -2.1 -3.3 -12.0 3 3 A V + 0 0 15 -2,-0.4 12,-0.9 12,-0.2 2,-0.4 -0.761 19.5 168.1 -95.9 99.5 -0.8 -3.7 -8.5 4 4 A Q B -A 14 0A 106 -2,-1.0 2,-0.3 53,-0.3 10,-0.2 -0.872 9.1-174.3-111.8 144.1 -2.5 -6.8 -6.9 5 5 A T - 0 0 9 8,-2.0 8,-0.2 -2,-0.4 2,-0.2 -0.820 13.7-170.5-130.4 171.9 -1.5 -8.4 -3.7 6 6 A R S S+ 0 0 213 -2,-0.3 48,-0.1 6,-0.2 8,-0.0 -0.591 71.7 30.5-165.0 96.3 -2.3 -11.5 -1.6 7 7 A G S S+ 0 0 54 -2,-0.2 47,-0.1 48,-0.0 4,-0.0 0.031 87.4 98.3 143.0 -30.2 -1.1 -12.2 1.9 8 8 A G S > S- 0 0 15 1,-0.1 3,-0.6 5,-0.1 46,-0.2 0.477 104.7 -64.4 -61.1-142.4 -0.8 -8.7 3.5 9 9 A N T 3 S+ 0 0 76 44,-1.1 45,-0.1 1,-0.2 -1,-0.1 0.353 126.0 76.8 -93.3 8.0 -3.6 -7.4 5.6 10 10 A S T 3 S- 0 0 20 43,-0.5 -1,-0.2 3,-0.1 44,-0.1 0.484 92.6-136.0 -94.7 -1.9 -6.1 -7.4 2.7 11 11 A N S < S- 0 0 155 -3,-0.6 -2,-0.1 1,-0.1 43,-0.1 0.727 84.9 -23.4 56.5 16.5 -6.5 -11.2 2.8 12 12 A G S S+ 0 0 42 1,-0.1 2,-0.3 0, 0.0 -6,-0.2 0.706 98.4 138.0 112.8 76.0 -6.2 -11.1 -1.0 13 13 A A - 0 0 39 -8,-0.2 -8,-2.0 0, 0.0 2,-0.6 -0.932 54.3-100.3-142.5 166.7 -7.1 -7.7 -2.5 14 14 A L B -A 4 0A 87 -2,-0.3 -10,-0.3 -10,-0.2 -11,-0.1 -0.787 41.6-117.5 -93.2 122.4 -5.7 -5.3 -5.2 15 15 A a - 0 0 7 -12,-0.9 2,-0.3 -2,-0.6 -12,-0.2 -0.094 35.8-151.4 -49.7 155.3 -3.7 -2.4 -3.9 16 16 A H - 0 0 65 26,-1.9 26,-0.2 28,-0.2 28,-0.1 -0.887 8.6 -99.9-132.0 165.1 -5.3 1.0 -4.7 17 17 A F S S+ 0 0 49 -2,-0.3 10,-0.2 1,-0.1 2,-0.2 -0.997 88.4 22.1-150.1 147.5 -4.2 4.6 -5.3 18 18 A P S S+ 0 0 62 0, 0.0 2,-0.4 0, 0.0 9,-0.3 0.607 77.1 175.6 -75.6 166.1 -3.9 7.1 -4.1 19 19 A F E -B 26 0B 0 7,-2.0 7,-1.7 -2,-0.2 2,-0.3 -0.914 31.3-127.6-140.8 114.2 -3.9 5.7 -0.5 20 20 A L E -Bc 25 46B 35 25,-0.6 27,-1.8 -2,-0.4 2,-0.7 -0.385 27.7-173.0 -59.3 115.7 -3.4 7.8 2.6 21 21 A Y S S- 0 0 36 3,-1.0 3,-0.2 -2,-0.3 -1,-0.1 -0.825 71.5 -31.1-115.8 95.0 -0.6 6.1 4.6 22 22 A N S S- 0 0 90 -2,-0.7 -1,-0.2 1,-0.2 3,-0.1 0.962 126.4 -44.8 64.3 48.7 -0.1 7.8 8.0 23 23 A N S S+ 0 0 136 1,-0.1 2,-0.6 -3,-0.1 -1,-0.2 0.662 120.4 115.5 69.6 12.1 -1.2 11.2 6.7 24 24 A H - 0 0 105 -3,-0.2 -3,-1.0 -5,-0.1 2,-0.6 -0.678 59.1-152.8-114.5 79.8 1.0 10.6 3.6 25 25 A N E -B 20 0B 103 -2,-0.6 2,-0.6 -5,-0.2 -5,-0.3 -0.280 19.1-170.4 -52.3 101.7 -1.3 10.3 0.6 26 26 A Y E -B 19 0B 54 -7,-1.7 -7,-2.0 -2,-0.6 16,-0.1 -0.860 20.1-164.6-102.4 119.4 0.9 8.1 -1.6 27 27 A T S S+ 0 0 91 -2,-0.6 2,-0.3 -9,-0.3 -1,-0.1 0.035 76.5 18.9 -88.8 31.7 -0.3 7.6 -5.2 28 28 A D S S- 0 0 106 -9,-0.2 2,-0.2 -12,-0.1 -9,-0.1 -0.933 102.2 -52.8-170.9-167.3 2.0 4.6 -5.6 29 29 A b - 0 0 23 -2,-0.3 2,-0.3 12,-0.1 12,-0.2 -0.553 47.6-169.0 -86.5 154.2 3.9 1.9 -3.7 30 30 A T B -D 40 0C 3 10,-2.2 10,-1.9 -2,-0.2 3,-0.3 -0.999 25.2-155.4-143.5 146.3 6.4 2.8 -1.0 31 31 A S > + 0 0 34 -2,-0.3 3,-1.7 8,-0.2 5,-0.1 0.072 62.5 114.6-106.9 24.8 9.1 0.9 1.0 32 32 A E T 3 S+ 0 0 114 1,-0.3 -1,-0.2 8,-0.1 7,-0.1 0.747 82.4 46.1 -66.9 -19.1 9.1 3.3 4.0 33 33 A G T 3 S+ 0 0 56 -3,-0.3 2,-0.3 7,-0.0 -1,-0.3 0.200 105.8 77.6-106.4 15.7 7.7 0.4 6.1 34 34 A R < - 0 0 69 -3,-1.7 -3,-0.1 4,-0.1 5,-0.0 -0.825 56.2-161.1-121.8 163.6 10.2 -2.2 4.7 35 35 A R S S+ 0 0 244 -2,-0.3 -1,-0.1 0, 0.0 -3,-0.1 0.098 83.4 53.8-128.7 21.2 13.9 -2.9 5.4 36 36 A D S S- 0 0 73 2,-0.2 3,-0.0 -5,-0.1 -5,-0.0 0.660 105.3 -95.1-118.3 -74.0 14.8 -4.8 2.2 37 37 A N S S+ 0 0 145 1,-0.1 -3,-0.1 0, 0.0 -6,-0.0 0.149 82.2 105.3 177.8 -37.8 14.0 -3.1 -1.1 38 38 A M - 0 0 124 1,-0.1 2,-0.4 -7,-0.0 -2,-0.2 0.087 63.5-126.1 -52.8 176.9 10.5 -4.2 -2.4 39 39 A K - 0 0 97 17,-0.1 17,-1.6 -8,-0.1 -8,-0.2 -0.992 18.3-160.9-133.8 137.3 7.6 -1.8 -2.1 40 40 A W E -DE 30 55C 13 -10,-1.9 -10,-2.2 -2,-0.4 2,-0.3 -0.475 6.2-153.3-105.9-178.5 4.2 -2.3 -0.4 41 41 A a E - E 0 54C 0 13,-1.8 13,-1.3 -12,-0.2 2,-0.2 -0.997 21.9-104.9-154.3 151.6 0.9 -0.4 -0.9 42 42 A G E - E 0 53C 0 -2,-0.3 -26,-1.9 11,-0.2 11,-0.3 -0.514 16.6-158.5 -78.6 146.5 -2.3 0.3 1.2 43 43 A T S S+ 0 0 28 9,-1.9 2,-0.2 -28,-0.2 10,-0.2 0.487 73.5 61.2-101.4 -4.7 -5.4 -1.6 0.2 44 44 A T S S- 0 0 28 8,-0.8 3,-0.3 -28,-0.1 -28,-0.2 -0.577 83.4-121.1-112.8 179.0 -7.8 0.9 1.8 45 45 A Q S S+ 0 0 123 1,-0.2 -25,-0.6 -2,-0.2 2,-0.1 0.456 105.9 39.0 -99.6 -1.2 -8.5 4.6 1.2 46 46 A N B >> +c 20 0B 73 -27,-0.1 3,-1.2 1,-0.1 4,-1.0 -0.567 58.5 172.3-147.6 78.6 -7.6 5.6 4.8 47 47 A Y H >> S+ 0 0 44 -27,-1.8 4,-1.3 1,-0.3 3,-0.9 0.922 83.1 59.7 -55.8 -43.4 -4.6 3.7 6.2 48 48 A D H 34 S+ 0 0 86 -28,-0.5 -1,-0.3 1,-0.3 -27,-0.1 0.823 121.7 26.6 -56.9 -26.6 -4.5 6.0 9.3 49 49 A A H <4 S+ 0 0 78 -3,-1.2 -1,-0.3 0, 0.0 -2,-0.2 0.332 131.7 39.4-116.8 5.4 -8.1 4.8 10.0 50 50 A D H << S- 0 0 59 -4,-1.0 -3,-0.2 -3,-0.9 -2,-0.2 0.711 74.3-155.8-119.6 -51.0 -7.9 1.4 8.3 51 51 A Q < + 0 0 140 -4,-1.3 2,-0.4 -5,-0.3 -4,-0.1 0.953 46.0 133.7 71.4 47.9 -4.5 -0.2 8.9 52 52 A K + 0 0 79 -42,-0.0 -9,-1.9 -44,-0.0 -8,-0.8 -0.961 23.7 163.5-134.2 119.7 -4.5 -2.5 5.8 53 53 A F E -E 42 0C 70 -2,-0.4 -44,-1.1 -11,-0.3 -43,-0.5 -0.591 9.9-178.1-122.6-173.1 -1.5 -2.8 3.5 54 54 A G E -E 41 0C 0 -13,-1.3 -13,-1.8 -46,-0.2 2,-0.2 -0.897 33.5 -80.2-164.9-168.8 -0.4 -5.2 0.7 55 55 A F E -E 40 0C 67 -15,-0.3 -40,-0.3 -2,-0.3 -15,-0.2 -0.642 24.0-135.7-107.0 168.4 2.6 -5.7 -1.7 56 56 A b - 0 0 23 -17,-1.6 2,-1.6 -2,-0.2 -17,-0.1 -0.412 22.4-179.1-121.7 60.4 3.4 -4.0 -5.0 57 57 A P + 0 0 74 0, 0.0 -53,-0.3 0, 0.0 2,-0.3 -0.359 50.3 82.6 -59.5 88.4 4.4 -6.8 -7.3 58 58 A M 0 0 109 -2,-1.6 -2,-0.1 -55,-0.1 -55,-0.1 -0.943 360.0 360.0-168.8-171.3 5.1 -4.6 -10.4 59 59 A A 0 0 159 -2,-0.3 0, 0.0 0, 0.0 0, 0.0 -0.842 360.0 360.0-111.8 360.0 7.7 -2.3 -12.1