==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 20-SEP-00 1FVY . COMPND 2 MOLECULE: PARATHYROID HORMONE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR Z.CHEN . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2927.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 45.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 38.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 167 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 77.8 -15.4 3.8 -3.1 2 2 A V - 0 0 81 1,-0.1 2,-0.2 2,-0.0 3,-0.0 -0.214 360.0 -50.0-133.5-134.4 -14.6 3.3 0.7 3 3 A S > - 0 0 76 -2,-0.1 4,-3.2 1,-0.1 5,-0.2 -0.732 48.8-109.6-108.9 161.9 -12.5 5.5 3.2 4 4 A E H > S+ 0 0 122 -2,-0.2 4,-1.7 2,-0.2 5,-0.1 0.918 122.4 46.3 -57.0 -40.2 -9.0 7.0 2.6 5 5 A I H > S+ 0 0 118 2,-0.2 4,-1.9 1,-0.2 3,-0.2 0.974 115.9 43.4 -65.2 -54.2 -7.6 4.5 5.2 6 6 A Q H > S+ 0 0 91 1,-0.2 4,-2.7 2,-0.2 -2,-0.2 0.865 110.2 58.1 -60.9 -35.6 -9.5 1.5 3.7 7 7 A L H X S+ 0 0 74 -4,-3.2 4,-1.9 2,-0.2 -1,-0.2 0.915 106.4 48.0 -62.7 -40.6 -8.5 2.7 0.2 8 8 A M H < S+ 0 0 78 -4,-1.7 -2,-0.2 -5,-0.2 -1,-0.2 0.924 112.2 49.7 -65.9 -41.5 -4.8 2.5 1.1 9 9 A H H >< S+ 0 0 116 -4,-1.9 3,-1.4 1,-0.2 -2,-0.2 0.924 109.6 51.3 -62.7 -43.4 -5.4 -1.0 2.6 10 10 A N H 3< S+ 0 0 70 -4,-2.7 4,-0.5 1,-0.3 3,-0.4 0.886 117.5 39.0 -62.1 -38.0 -7.2 -2.1 -0.6 11 11 A L T 3< S+ 0 0 88 -4,-1.9 -1,-0.3 1,-0.2 -2,-0.2 0.138 106.1 71.6 -97.9 20.9 -4.2 -0.9 -2.7 12 12 A G S < S+ 0 0 19 -3,-1.4 -1,-0.2 -5,-0.1 -2,-0.1 -0.122 101.3 32.9-126.7 39.4 -1.5 -2.1 -0.2 13 13 A K S S+ 0 0 95 -3,-0.4 3,-0.5 10,-0.0 7,-0.2 0.407 90.5 79.4-157.7 -36.2 -1.6 -6.0 -0.6 14 14 A H S S+ 0 0 111 -4,-0.5 -3,-0.1 1,-0.2 5,-0.1 0.875 75.2 87.1 -50.4 -43.7 -2.4 -7.1 -4.2 15 15 A L S S- 0 0 39 -4,-0.1 -1,-0.2 1,-0.1 3,-0.1 0.759 108.8 -84.1 -22.9 -73.2 1.3 -6.5 -5.3 16 16 A N - 0 0 89 -3,-0.5 -1,-0.1 1,-0.0 -2,-0.0 0.009 62.1 -69.4-169.3 -71.9 2.8 -10.0 -4.4 17 17 A S S S+ 0 0 67 0, 0.0 4,-0.5 0, 0.0 -2,-0.1 0.036 126.9 30.7-170.2 -56.8 3.9 -10.6 -0.7 18 18 A M S > S+ 0 0 120 2,-0.1 4,-1.7 1,-0.1 5,-0.2 0.666 108.4 72.5 -90.3 -19.0 7.0 -8.5 0.1 19 19 A E H > S+ 0 0 91 1,-0.2 4,-2.5 2,-0.2 5,-0.2 0.933 96.8 48.6 -63.6 -44.5 5.9 -5.7 -2.3 20 20 A R H > S+ 0 0 83 -7,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.872 106.2 59.3 -64.0 -34.0 3.1 -4.5 0.0 21 21 A V H 4 S+ 0 0 69 -4,-0.5 4,-0.3 1,-0.2 -1,-0.2 0.953 116.0 32.3 -60.1 -49.2 5.6 -4.5 3.0 22 22 A E H >X S+ 0 0 80 -4,-1.7 4,-3.2 1,-0.2 3,-0.9 0.834 115.6 60.2 -77.3 -31.4 7.9 -1.9 1.2 23 23 A W H 3X S+ 0 0 45 -4,-2.5 4,-1.0 1,-0.2 5,-0.2 0.866 98.7 56.0 -65.9 -36.1 5.0 -0.2 -0.5 24 24 A L H 3< S+ 0 0 113 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.637 124.1 24.8 -72.4 -10.1 3.2 0.8 2.8 25 25 A R H <> S+ 0 0 136 -3,-0.9 4,-0.6 -4,-0.3 -2,-0.2 0.717 123.1 46.1-119.5 -44.1 6.5 2.6 4.0 26 26 A K H X S+ 0 0 76 -4,-3.2 4,-3.2 1,-0.2 -3,-0.2 0.684 96.4 77.1 -78.2 -15.8 8.5 3.7 0.8 27 27 A K H < S+ 0 0 63 -4,-1.0 -1,-0.2 -5,-0.4 -3,-0.1 0.972 96.0 44.4 -57.0 -58.0 5.4 5.1 -1.0 28 28 A L H 4 S+ 0 0 132 -5,-0.2 3,-0.3 1,-0.2 -1,-0.2 0.844 118.5 45.6 -57.9 -32.7 5.3 8.4 1.0 29 29 A Q H < S+ 0 0 131 -4,-0.6 2,-0.4 1,-0.3 -2,-0.2 0.933 134.8 10.7 -76.1 -45.9 9.2 8.8 0.6 30 30 A D < 0 0 119 -4,-3.2 -1,-0.3 1,-0.1 -2,-0.1 -0.890 360.0 360.0-136.7 102.7 9.2 7.9 -3.2 31 31 A V 0 0 168 -2,-0.4 -1,-0.1 -3,-0.3 -3,-0.1 0.840 360.0 360.0 -76.2 360.0 5.7 7.8 -5.0