==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-SEP-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION/DNA 28-JUN-93 1GAU . COMPND 2 MOLECULE: DNA (5'-D(P*AP*GP*AP*TP*AP*AP*AP*C)-3'); . SOURCE 2 SYNTHETIC: YES; . AUTHOR G.M.CLORE,J.G.OMICHINSKI,A.M.GRONENBORN . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5350.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 8.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 242 0, 0.0 4,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -58.1 -6.0 10.9 16.7 2 2 A R > + 0 0 186 2,-0.1 3,-2.1 3,-0.0 0, 0.0 0.861 360.0 102.0 -64.3 -31.7 -6.5 9.3 13.2 3 3 A A T 3 S+ 0 0 94 1,-0.2 3,-0.1 3,-0.0 11,-0.1 -0.208 75.1 39.4 -51.9 138.6 -7.0 5.9 15.0 4 4 A G T 3 S+ 0 0 63 1,-0.2 2,-1.5 9,-0.1 -1,-0.2 -0.051 76.5 123.9 107.3 -31.8 -10.7 5.0 15.1 5 5 A T < - 0 0 35 -3,-2.1 2,-0.6 -4,-0.2 -1,-0.2 -0.409 44.7-170.3 -63.5 91.7 -11.5 6.4 11.6 6 6 A V - 0 0 85 -2,-1.5 7,-0.2 -3,-0.1 5,-0.2 -0.761 32.3-107.6 -88.9 122.2 -13.0 3.2 10.2 7 7 A C > - 0 0 2 5,-2.4 4,-2.8 -2,-0.6 3,-0.4 -0.244 21.5-146.1 -49.6 118.1 -13.6 3.5 6.4 8 8 A S T 4 S+ 0 0 66 18,-1.9 -1,-0.2 1,-0.2 19,-0.2 0.620 98.8 45.6 -65.3 -7.7 -17.4 3.8 6.0 9 9 A N T 4 S+ 0 0 53 17,-0.3 -1,-0.2 3,-0.1 35,-0.2 0.690 136.5 5.8-107.8 -23.6 -17.0 1.9 2.7 10 10 A C T 4 S- 0 0 4 -3,-0.4 -2,-0.2 2,-0.1 -3,-0.2 0.199 88.1-122.8-145.4 20.6 -14.7 -1.0 3.8 11 11 A Q < + 0 0 149 -4,-2.8 2,-0.3 -5,-0.2 -3,-0.1 0.688 57.5 155.6 45.1 20.3 -14.3 -0.6 7.6 12 12 A T - 0 0 12 1,-0.2 -5,-2.4 -5,-0.1 16,-0.2 -0.570 31.4-168.6 -77.4 135.8 -10.5 -0.4 7.1 13 13 A S S S+ 0 0 73 -2,-0.3 2,-0.6 -7,-0.2 -1,-0.2 0.691 74.0 61.3 -95.0 -21.4 -8.6 1.5 9.9 14 14 A T + 0 0 50 -11,-0.1 2,-0.3 -7,-0.0 -1,-0.1 -0.909 65.6 159.4-109.4 120.3 -5.3 1.7 7.9 15 15 A T - 0 0 20 -2,-0.6 3,-0.3 1,-0.1 36,-0.1 -0.937 43.8-135.2-135.7 159.8 -5.3 3.6 4.6 16 16 A T S S+ 0 0 95 -2,-0.3 2,-0.3 1,-0.3 -1,-0.1 0.823 103.1 18.7 -83.5 -30.8 -2.7 5.3 2.5 17 17 A L S S- 0 0 106 2,-0.0 12,-1.8 10,-0.0 2,-0.7 -0.742 75.9-151.5-142.1 91.3 -4.8 8.5 1.9 18 18 A W E -A 28 0A 70 -3,-0.3 2,-0.5 -2,-0.3 10,-0.2 -0.465 18.0-163.0 -64.2 109.1 -7.7 9.0 4.4 19 19 A R E -A 27 0A 97 8,-1.3 8,-2.3 -2,-0.7 2,-0.6 -0.817 8.0-145.1 -98.9 130.3 -10.3 11.0 2.3 20 20 A R E -A 26 0A 188 -2,-0.5 -2,-0.0 6,-0.2 8,-0.0 -0.821 13.4-140.4 -96.4 119.8 -13.0 12.8 4.3 21 21 A S E >> -A 25 0A 12 4,-0.9 3,-1.5 -2,-0.6 4,-0.6 -0.570 15.6-125.8 -79.2 142.8 -16.4 12.9 2.6 22 22 A P T 34 S+ 0 0 123 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.874 111.8 58.8 -54.3 -41.6 -18.4 16.1 2.8 23 23 A M T 34 S- 0 0 159 2,-0.1 -2,-0.0 1,-0.1 -3,-0.0 0.778 130.9 -95.6 -62.1 -21.1 -21.5 14.2 4.2 24 24 A G T <4 S+ 0 0 44 -3,-1.5 -1,-0.1 1,-0.2 -4,-0.0 0.769 79.8 136.0 109.0 44.7 -19.1 13.1 7.0 25 25 A D E < -A 21 0A 62 -4,-0.6 -4,-0.9 2,-0.1 2,-0.7 -0.828 42.8-151.5-129.3 98.9 -17.8 9.7 5.9 26 26 A P E +A 20 0A 20 0, 0.0 -18,-1.9 0, 0.0 2,-0.5 -0.504 26.5 175.8 -66.0 107.1 -14.1 9.0 6.3 27 27 A V E -A 19 0A 2 -8,-2.3 -8,-1.3 -2,-0.7 5,-0.2 -0.962 37.0-107.8-122.9 126.3 -13.4 6.5 3.5 28 28 A C E >> -A 18 0A 2 -2,-0.5 3,-2.0 -10,-0.2 4,-1.3 -0.179 37.5-111.2 -48.1 131.1 -9.9 5.1 2.7 29 29 A N H 3> S+ 0 0 40 -12,-1.8 4,-3.2 1,-0.3 5,-0.3 0.819 116.8 65.2 -35.1 -43.7 -8.7 6.7 -0.7 30 30 A A H 3> S+ 0 0 28 1,-0.2 4,-2.3 2,-0.2 5,-0.3 0.924 101.9 47.6 -51.4 -45.4 -9.0 3.3 -2.3 31 31 A C H <> S+ 0 0 2 -3,-2.0 4,-1.6 2,-0.2 -1,-0.2 0.900 113.9 48.7 -64.8 -37.4 -12.8 3.3 -1.8 32 32 A G H X S+ 0 0 12 -4,-1.3 4,-1.5 -5,-0.2 -2,-0.2 0.976 113.5 44.4 -67.3 -53.5 -13.0 6.9 -3.2 33 33 A L H >X S+ 0 0 86 -4,-3.2 4,-2.3 1,-0.2 3,-0.9 0.978 112.4 51.0 -55.7 -58.4 -10.9 6.1 -6.3 34 34 A Y H 3X S+ 0 0 68 -4,-2.3 4,-1.5 -5,-0.3 6,-0.4 0.901 103.7 61.5 -47.3 -42.6 -12.8 2.9 -7.1 35 35 A Y H 3X>S+ 0 0 99 -4,-1.6 4,-1.0 -5,-0.3 5,-0.8 0.935 108.5 41.3 -52.3 -47.0 -16.0 4.8 -6.8 36 36 A K H <<5S+ 0 0 158 -4,-1.5 -1,-0.2 -3,-0.9 -2,-0.2 0.896 101.1 72.5 -69.4 -38.1 -15.0 7.1 -9.7 37 37 A L H <5S+ 0 0 101 -4,-2.3 -1,-0.2 1,-0.3 -2,-0.2 0.921 129.0 0.6 -43.0 -52.5 -13.6 4.1 -11.7 38 38 A H H <5S- 0 0 133 -4,-1.5 -1,-0.3 3,-0.2 -2,-0.2 0.236 96.5-121.6-121.4 12.1 -17.2 2.9 -12.4 39 39 A Q T <5S+ 0 0 150 -4,-1.0 -3,-0.2 -5,-0.3 2,-0.2 0.856 84.7 93.6 50.1 34.9 -19.1 5.7 -10.5 40 40 A V S + 0 0 71 1,-0.2 3,-1.3 -35,-0.2 -13,-0.0 0.112 61.5 116.8 -93.3 25.5 -13.6 -4.3 -0.4 45 45 A T T 3 S+ 0 0 131 1,-0.2 -1,-0.2 3,-0.0 -35,-0.0 0.608 75.7 54.1 -68.8 -6.9 -12.6 -7.9 -1.2 46 46 A M T 3 S+ 0 0 125 -3,-0.4 -1,-0.2 2,-0.1 -2,-0.1 0.530 90.2 93.0-102.9 -7.8 -9.0 -6.5 -1.9 47 47 A R < + 0 0 68 -3,-1.3 2,-0.2 4,-0.0 4,-0.1 -0.380 52.0 179.4 -81.6 164.8 -8.6 -4.8 1.5 48 48 A K - 0 0 150 2,-0.2 4,-0.1 -2,-0.1 -2,-0.1 -0.786 47.9 -80.2-147.2-169.1 -6.9 -6.5 4.5 49 49 A D S S+ 0 0 143 -2,-0.2 2,-0.3 -37,-0.1 -36,-0.1 0.623 114.8 42.2 -78.8 -9.5 -5.9 -5.9 8.2 50 50 A G S S- 0 0 32 -37,-0.0 -2,-0.2 -38,-0.0 -1,-0.1 -0.991 101.1 -91.6-137.2 145.1 -2.8 -4.0 7.0 51 51 A I - 0 0 74 -2,-0.3 -36,-0.1 -36,-0.1 -2,-0.1 -0.300 47.2-129.5 -54.2 124.3 -2.2 -1.4 4.2 52 52 A Q - 0 0 87 -4,-0.1 2,-0.3 -2,-0.0 -1,-0.1 -0.330 31.6-179.4 -72.5 159.6 -1.1 -3.4 1.1 53 53 A T + 0 0 124 3,-0.0 2,-0.2 -2,-0.0 -1,-0.0 -0.985 11.4 176.4-155.3 163.3 2.0 -2.3 -0.7 54 54 A R - 0 0 209 -2,-0.3 2,-1.4 3,-0.0 3,-0.0 -0.754 60.9 -28.8-149.9-163.3 4.1 -3.3 -3.8 55 55 A N S S- 0 0 132 -2,-0.2 3,-0.2 1,-0.0 -2,-0.0 -0.395 74.4-134.6 -61.4 93.9 7.2 -2.1 -5.7 56 56 A R - 0 0 175 -2,-1.4 3,-0.1 1,-0.2 -1,-0.0 -0.092 38.7 -75.4 -48.4 150.2 6.8 1.6 -4.9 57 57 A K - 0 0 193 1,-0.1 -1,-0.2 2,-0.0 -3,-0.0 -0.260 64.5 -94.4 -51.5 126.0 7.2 3.9 -7.9 58 58 A V - 0 0 107 1,-0.2 2,-3.1 -3,-0.2 -1,-0.1 -0.129 33.2-121.0 -44.0 129.2 11.0 4.1 -8.6 59 59 A S 0 0 98 -3,-0.1 -1,-0.2 1,-0.1 -2,-0.0 -0.335 360.0 360.0 -73.5 65.9 12.4 7.2 -6.8 60 60 A S 0 0 154 -2,-3.1 -1,-0.1 0, 0.0 -3,-0.0 -0.356 360.0 360.0 -56.8 360.0 13.7 8.6 -10.1