==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNOGLOBULIN BINDING PROTEIN 15-MAY-91 1GB1 . COMPND 2 MOLECULE: PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOMYCES GRISEUS; . AUTHOR A.M.GRONENBORN,G.M.CLORE . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3887.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 66.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 147 0, 0.0 19,-1.7 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0-175.0 -13.5 0.1 4.0 2 2 A T E -A 19 0A 60 17,-0.2 2,-0.2 19,-0.1 17,-0.2 -0.971 360.0-158.7-141.7 124.8 -9.8 -0.5 4.9 3 3 A Y E -A 18 0A 17 15,-1.3 15,-1.6 -2,-0.4 2,-0.5 -0.677 18.5-124.7-101.0 157.1 -7.2 -2.3 2.9 4 4 A K E -Ab 17 51A 81 46,-1.5 48,-1.3 -2,-0.2 13,-0.2 -0.875 21.2-147.5-104.1 124.9 -3.9 -3.8 4.2 5 5 A L - 0 0 0 11,-3.1 2,-0.5 -2,-0.5 11,-0.4 -0.608 3.6-156.3 -89.8 150.4 -0.6 -2.7 2.5 6 6 A I - 0 0 53 46,-0.3 48,-2.0 -2,-0.2 2,-0.7 -0.895 7.1-154.3-127.7 101.9 2.4 -5.1 2.2 7 7 A L E +Cd 14 54A 10 7,-1.9 7,-1.4 -2,-0.5 48,-0.2 -0.645 14.8 178.7 -79.8 114.3 5.7 -3.3 1.9 8 8 A N E +C 13 0A 80 46,-2.2 5,-0.2 -2,-0.7 -1,-0.1 -0.152 20.2 163.9-104.7 38.9 8.2 -5.5 0.0 9 9 A G - 0 0 0 3,-0.8 30,-0.1 1,-0.2 -2,-0.0 -0.261 41.4-137.5 -58.3 140.5 11.0 -2.9 0.1 10 10 A K S S+ 0 0 175 1,-0.2 -1,-0.2 3,-0.0 3,-0.1 0.814 108.8 31.9 -70.0 -27.9 14.4 -4.4 -0.6 11 11 A T S S+ 0 0 111 1,-0.3 2,-0.3 27,-0.2 -1,-0.2 0.486 134.8 22.5-104.8 -7.0 15.8 -2.4 2.2 12 12 A L - 0 0 90 26,-0.1 -3,-0.8 2,-0.0 2,-0.4 -0.871 61.2-166.1-163.0 126.4 12.7 -2.4 4.4 13 13 A K E +C 8 0A 134 -2,-0.3 2,-0.2 -5,-0.2 -5,-0.2 -0.934 28.9 129.4-116.6 136.9 9.6 -4.7 4.6 14 14 A G E -C 7 0A 31 -7,-1.4 -7,-1.9 -2,-0.4 2,-0.2 -0.822 35.5-139.5-159.1-162.2 6.4 -3.8 6.5 15 15 A E + 0 0 129 -9,-0.3 2,-0.3 -2,-0.2 -9,-0.2 -0.802 17.5 172.0-176.2 131.1 2.6 -3.6 6.3 16 16 A T - 0 0 46 -11,-0.4 -11,-3.1 -2,-0.2 2,-0.4 -0.991 26.0-125.5-147.0 154.2 -0.0 -1.2 7.4 17 17 A T E -A 4 0A 89 -2,-0.3 2,-0.4 -13,-0.2 -13,-0.2 -0.834 23.4-170.6-104.6 138.3 -3.8 -0.6 7.0 18 18 A T E -A 3 0A 31 -15,-1.6 -15,-1.3 -2,-0.4 2,-0.6 -0.958 23.4-122.9-127.3 145.0 -5.3 2.6 5.8 19 19 A E E +A 2 0A 159 -2,-0.4 2,-0.3 -17,-0.2 -17,-0.2 -0.754 41.9 161.7 -88.3 122.7 -8.9 3.8 5.6 20 20 A A - 0 0 9 -19,-1.7 3,-0.1 -2,-0.6 -2,-0.0 -0.978 40.8-145.8-140.0 153.1 -10.0 4.8 2.1 21 21 A V S S+ 0 0 116 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.773 86.1 8.0 -88.2 -27.9 -13.4 5.2 0.3 22 22 A D S > S- 0 0 69 1,-0.1 4,-0.9 -21,-0.1 -1,-0.1 -0.859 76.0-106.1-142.7 177.6 -12.1 4.0 -3.1 23 23 A A H > S+ 0 0 39 -2,-0.3 4,-2.6 2,-0.2 5,-0.2 0.899 113.3 58.8 -76.3 -40.7 -9.1 2.3 -4.7 24 24 A A H > S+ 0 0 60 1,-0.3 4,-1.3 2,-0.2 5,-0.2 0.955 110.4 41.7 -53.6 -53.4 -7.9 5.5 -6.5 25 25 A T H > S+ 0 0 42 1,-0.2 4,-2.7 2,-0.2 -1,-0.3 0.811 112.1 58.0 -65.5 -26.7 -7.5 7.4 -3.2 26 26 A A H X S+ 0 0 0 -4,-0.9 4,-2.4 2,-0.2 5,-0.4 0.898 100.2 55.8 -70.2 -38.5 -6.0 4.2 -1.6 27 27 A E H X S+ 0 0 101 -4,-2.6 4,-1.3 1,-0.2 -1,-0.2 0.887 115.8 38.0 -61.1 -37.5 -3.2 4.1 -4.2 28 28 A K H X S+ 0 0 143 -4,-1.3 4,-2.5 -5,-0.2 -2,-0.2 0.894 113.2 55.6 -81.2 -41.3 -2.3 7.7 -3.3 29 29 A V H X S+ 0 0 49 -4,-2.7 4,-1.0 2,-0.2 -2,-0.2 0.969 115.5 37.2 -55.9 -55.7 -2.9 7.3 0.5 30 30 A F H >X S+ 0 0 1 -4,-2.4 4,-2.8 1,-0.2 3,-1.1 0.935 113.4 57.4 -63.7 -44.5 -0.5 4.3 0.8 31 31 A K H 3X S+ 0 0 104 -4,-1.3 4,-1.4 -5,-0.4 -1,-0.2 0.886 103.5 54.7 -53.9 -37.3 1.9 5.8 -1.7 32 32 A Q H 3X S+ 0 0 133 -4,-2.5 4,-0.5 2,-0.2 -1,-0.3 0.815 111.5 45.8 -66.6 -27.7 2.2 8.8 0.5 33 33 A Y H X< S+ 0 0 97 -3,-1.1 3,-2.0 -4,-1.0 -2,-0.2 0.957 106.9 53.5 -79.3 -54.6 3.1 6.4 3.4 34 34 A A H >X>S+ 0 0 0 -4,-2.8 4,-1.9 1,-0.3 3,-1.5 0.821 103.0 62.9 -50.0 -29.7 5.7 4.3 1.6 35 35 A N H 3<5S+ 0 0 92 -4,-1.4 -1,-0.3 -5,-0.3 -2,-0.2 0.858 89.9 65.0 -65.8 -33.3 7.3 7.6 0.7 36 36 A D T <<5S+ 0 0 125 -3,-2.0 -1,-0.3 -4,-0.5 -2,-0.2 0.439 115.0 32.4 -70.0 5.4 7.9 8.3 4.4 37 37 A N T <45S- 0 0 73 -3,-1.5 -2,-0.2 -4,-0.2 -1,-0.2 0.537 118.5-101.6-130.8 -26.2 10.2 5.2 4.2 38 38 A G T <5 + 0 0 38 -4,-1.9 2,-0.5 1,-0.2 -3,-0.2 0.848 68.2 141.3 101.0 51.0 11.7 5.3 0.7 39 39 A V < + 0 0 2 -5,-1.4 2,-0.4 -8,-0.2 -1,-0.2 -0.830 12.7 146.4-127.5 94.4 9.7 2.7 -1.2 40 40 A D + 0 0 73 -2,-0.5 2,-0.1 16,-0.1 3,-0.1 -0.964 30.6 81.0-132.8 118.2 8.8 3.7 -4.8 41 41 A G S S+ 0 0 48 -2,-0.4 2,-0.3 1,-0.1 15,-0.2 -0.435 82.0 4.5-169.5-110.6 8.6 1.2 -7.7 42 42 A E E -E 55 0A 149 13,-1.8 13,-2.2 -2,-0.1 2,-0.4 -0.749 59.0-154.3 -99.5 148.3 5.8 -1.1 -8.8 43 43 A W E -E 54 0A 71 -2,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.968 9.6-172.3-125.7 137.3 2.3 -1.1 -7.1 44 44 A T E -E 53 0A 73 9,-3.5 9,-1.5 -2,-0.4 2,-0.4 -0.791 10.1-150.9-122.5 166.4 -0.2 -4.0 -6.9 45 45 A Y E -E 52 0A 67 -2,-0.3 2,-0.8 7,-0.2 7,-0.2 -0.986 4.4-160.2-140.9 127.4 -3.8 -4.3 -5.6 46 46 A D E >>> +E 51 0A 66 5,-1.3 3,-2.1 -2,-0.4 5,-1.3 -0.626 18.7 167.6-106.5 73.8 -5.4 -7.5 -4.2 47 47 A D T 345 + 0 0 123 -2,-0.8 -1,-0.1 1,-0.3 5,-0.1 0.466 69.9 76.2 -65.9 5.0 -9.1 -6.7 -4.7 48 48 A A T 345S+ 0 0 83 3,-0.2 -1,-0.3 1,-0.1 -2,-0.0 0.718 119.0 5.1 -87.7 -21.7 -9.6 -10.4 -3.8 49 49 A T T <45S- 0 0 75 -3,-2.1 -2,-0.2 2,-0.1 -45,-0.1 0.169 104.9-103.8-145.6 16.9 -9.0 -9.9 -0.1 50 50 A K T <5S+ 0 0 115 -4,-1.0 -46,-1.5 1,-0.2 2,-0.4 0.979 73.6 140.0 55.4 60.0 -8.7 -6.1 0.3 51 51 A T E < -bE 4 46A 11 -5,-1.3 -5,-1.3 -48,-0.3 -46,-0.2 -0.934 39.2-153.2-137.6 112.8 -4.9 -6.2 0.6 52 52 A F E - E 0 45A 2 -48,-1.3 2,-0.3 -2,-0.4 -46,-0.3 -0.403 16.0-174.4 -79.5 162.2 -2.6 -3.6 -1.0 53 53 A T E - E 0 44A 26 -9,-1.5 -9,-3.5 -48,-0.2 2,-0.3 -0.952 10.9-177.5-159.8 137.4 1.0 -4.4 -1.9 54 54 A V E -dE 7 43A 0 -48,-2.0 -46,-2.2 -2,-0.3 2,-0.4 -0.973 5.5-166.1-135.3 150.6 4.0 -2.6 -3.3 55 55 A T E E 0 42A 54 -13,-2.2 -13,-1.8 -2,-0.3 -46,-0.1 -0.919 360.0 360.0-142.2 114.1 7.5 -3.8 -4.2 56 56 A E 0 0 115 -2,-0.4 -16,-0.1 -15,-0.2 -47,-0.1 0.532 360.0 360.0 -60.4 360.0 10.5 -1.5 -4.8