==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SWEET TASTE-SUPPRESSING PROTEIN 12-MAR-96 1GUR . COMPND 2 MOLECULE: GURMARIN; . SOURCE 2 ORGANISM_SCIENTIFIC: GYMNEMA SYLVESTRE; . AUTHOR K.ARAI,R.ISHIMA,S.MORIKAWA,T.IMOTO,S.YOSHIMURA,S.AIMOTO, . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3512.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 25.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 215 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-176.6 8.1 35.2 -26.8 2 2 A Q - 0 0 180 2,-0.0 2,-0.1 0, 0.0 0, 0.0 -0.999 360.0-172.9-139.7 142.1 5.0 34.4 -24.8 3 3 A C - 0 0 77 -2,-0.4 2,-0.2 2,-0.0 14,-0.1 -0.073 9.5-152.6-131.5-166.8 1.6 36.1 -24.3 4 4 A V + 0 0 32 -2,-0.1 14,-1.7 4,-0.1 2,-0.2 -0.570 26.0 143.1-179.8 102.8 -1.5 35.7 -22.3 5 5 A K + 0 0 92 1,-0.3 14,-0.1 12,-0.2 18,-0.1 -0.764 48.2 18.5-165.8 131.4 -5.1 36.7 -23.0 6 6 A K S S+ 0 0 132 16,-0.3 -1,-0.3 -2,-0.2 3,-0.1 0.864 128.9 4.4 73.2 109.2 -8.6 35.5 -22.4 7 7 A D S S+ 0 0 118 1,-0.1 -1,-0.1 27,-0.1 28,-0.0 0.636 109.9 126.8 54.1 22.7 -9.2 32.9 -19.8 8 8 A E - 0 0 65 1,-0.0 25,-1.4 24,-0.0 2,-0.6 0.087 69.8 -85.5 -93.6-166.1 -5.5 33.4 -19.1 9 9 A L - 0 0 107 23,-0.3 23,-0.2 -3,-0.1 16,-0.1 -0.930 38.2-124.6-114.9 112.2 -3.8 34.2 -15.8 10 10 A C + 0 0 1 -2,-0.6 13,-0.1 14,-0.4 23,-0.1 -0.113 29.9 179.4 -48.4 147.6 -3.5 37.9 -14.8 11 11 A I > + 0 0 45 -7,-0.1 5,-1.5 20,-0.1 4,-0.2 -0.727 12.5 174.0-158.4 98.6 0.1 39.0 -14.1 12 12 A P T 5 + 0 0 90 0, 0.0 3,-0.2 0, 0.0 -1,-0.1 0.520 55.6 97.2 -87.7 -13.5 0.6 42.6 -13.0 13 13 A Y T 5S- 0 0 203 1,-0.2 -2,-0.0 2,-0.0 0, 0.0 0.944 116.0 -36.4 -45.1 -67.6 4.3 42.4 -12.3 14 14 A Y T 5S+ 0 0 201 -3,-0.2 -1,-0.2 0, 0.0 0, 0.0 -0.424 126.1 59.5-156.1 70.7 5.5 43.7 -15.7 15 15 A L T 5 - 0 0 108 -4,-0.2 -5,-0.0 -3,-0.2 -2,-0.0 0.228 57.9-158.5-154.4 -86.8 3.1 42.5 -18.4 16 16 A D < - 0 0 107 -5,-1.5 7,-0.1 6,-0.0 -12,-0.1 0.707 42.9 -93.2 77.6 109.8 -0.6 43.1 -18.6 17 17 A C - 0 0 12 5,-0.2 -12,-0.2 -14,-0.1 6,-0.1 0.037 53.2 -82.9 -44.1 169.1 -2.4 40.6 -20.8 18 18 A C S S- 0 0 68 -14,-1.7 -12,-0.1 1,-0.1 -1,-0.0 0.189 70.1 -44.2 -66.4-176.1 -3.0 41.4 -24.5 19 19 A E S S+ 0 0 168 1,-0.3 -1,-0.1 -14,-0.1 3,-0.1 -0.914 116.0 7.7-120.8 145.3 -5.9 43.6 -25.6 20 20 A P S S+ 0 0 111 0, 0.0 -1,-0.3 0, 0.0 15,-0.2 -0.947 115.7 86.9 -92.7 20.1 -8.6 44.1 -25.4 21 21 A L - 0 0 23 13,-0.1 2,-0.1 1,-0.1 12,-0.0 -0.258 61.0-160.0 -78.4 159.5 -8.2 41.6 -22.6 22 22 A E - 0 0 105 -3,-0.1 12,-0.4 -6,-0.1 2,-0.3 -0.380 12.9-117.0-126.3-160.3 -7.1 42.7 -19.1 23 23 A C + 0 0 20 10,-0.2 2,-0.3 -2,-0.1 10,-0.2 -0.931 37.3 146.8-156.7 119.1 -5.6 41.3 -15.9 24 24 A K E -A 32 0A 107 8,-1.7 8,-1.8 -2,-0.3 2,-0.6 -0.944 45.6 -95.4-150.9 171.1 -7.1 41.1 -12.4 25 25 A K E + 0 0 99 -2,-0.3 6,-0.2 6,-0.2 3,-0.1 -0.857 23.5 178.7-103.1 119.3 -7.1 39.0 -9.2 26 26 A V E S- 0 0 67 -2,-0.6 2,-0.3 1,-0.3 -1,-0.2 0.856 79.6 -15.9 -84.5 -26.8 -9.8 36.4 -8.8 27 27 A N E > -A 30 0A 107 3,-0.6 3,-1.2 1,-0.1 -1,-0.3 -0.930 67.2-103.2-164.8 170.0 -8.2 35.4 -5.5 28 28 A W T 3 S+ 0 0 214 -2,-0.3 -1,-0.1 1,-0.3 -2,-0.0 0.814 129.2 40.3 -73.4 -19.9 -4.9 35.8 -3.5 29 29 A W T 3 S+ 0 0 242 -3,-0.0 2,-0.3 -4,-0.0 -1,-0.3 -0.029 121.3 56.9-105.9 23.4 -4.2 32.2 -4.5 30 30 A D E < -A 27 0A 77 -3,-1.2 -3,-0.6 2,-0.0 2,-0.3 -0.991 55.7-170.3-149.1 162.0 -5.5 32.9 -8.0 31 31 A H E + 0 0 74 -2,-0.3 2,-0.3 -6,-0.2 -6,-0.2 -0.974 11.8 168.1-158.7 150.9 -5.2 35.0 -11.1 32 32 A K E -A 24 0A 87 -8,-1.8 -8,-1.7 -2,-0.3 -23,-0.3 -0.905 30.6-116.2-162.3 146.3 -7.2 35.5 -14.3 33 33 A C - 0 0 7 -25,-1.4 -10,-0.2 -2,-0.3 -23,-0.1 0.145 25.0-150.4 -70.7-170.7 -7.7 37.7 -17.3 34 34 A I 0 0 86 -12,-0.4 -27,-0.1 -11,-0.0 -1,-0.1 0.521 360.0 360.0-129.3 -90.3 -10.9 39.7 -17.9 35 35 A G 0 0 65 -15,-0.2 -12,-0.1 -29,-0.1 -1,-0.0 -0.908 360.0 360.0-163.3 360.0 -12.3 40.6 -21.3