==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 09-MAR-01 1H9F . COMPND 2 MOLECULE: THYMOPOIETIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.LAGURI,B.GILQUIN,N.WOLFF,R.ROMI-LEBRUN,K.COURCHAY, . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4632.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 49.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 14.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 24.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 265 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 97.9 8.6 -8.8 -14.8 2 2 A Q - 0 0 134 48,-0.0 48,-0.0 0, 0.0 0, 0.0 0.884 360.0-174.8 -92.6 -47.1 6.8 -6.7 -12.1 3 3 A E - 0 0 111 47,-0.1 4,-0.1 4,-0.0 47,-0.1 0.884 64.7 -4.7 50.2 101.6 5.6 -3.7 -14.2 4 4 A D - 0 0 100 3,-0.1 4,-0.1 46,-0.1 45,-0.1 0.530 63.9-161.7 60.1 139.5 4.1 -1.2 -11.8 5 5 A K S > S+ 0 0 59 46,-0.1 3,-0.8 2,-0.1 44,-0.2 0.687 87.3 39.3-118.8 -59.4 3.9 -2.2 -8.1 6 6 A D T 3> S+ 0 0 51 1,-0.2 4,-0.5 39,-0.1 43,-0.1 0.480 82.4 117.0 -72.6 3.0 1.3 0.1 -6.4 7 7 A D T 34 + 0 0 106 2,-0.1 -1,-0.2 -4,-0.1 3,-0.1 0.881 48.1 93.8 -38.0 -48.0 -0.7 -0.3 -9.6 8 8 A L T <4 S- 0 0 70 -3,-0.8 2,-1.4 1,-0.2 3,-0.1 -0.230 104.3-100.4 -48.4 129.0 -3.5 -2.0 -7.5 9 9 A D T > - 0 0 80 1,-0.2 4,-1.3 2,-0.1 -1,-0.2 -0.286 46.2-176.8 -54.6 89.8 -5.8 0.8 -6.5 10 10 A V T < S+ 0 0 6 -2,-1.4 -1,-0.2 -4,-0.5 34,-0.1 0.538 77.3 45.8 -71.4 -2.2 -4.3 1.2 -3.0 11 11 A T T 4 S+ 0 0 45 30,-0.1 -1,-0.1 -3,-0.1 27,-0.1 0.835 113.2 39.2-106.0 -57.3 -7.0 3.8 -2.3 12 12 A E T 4 S+ 0 0 129 25,-0.1 -2,-0.1 26,-0.1 26,-0.1 0.815 94.2 118.3 -64.1 -24.2 -10.4 2.6 -3.5 13 13 A L S < S- 0 0 21 -4,-1.3 -3,-0.1 24,-0.1 25,-0.0 0.185 72.4-104.7 -34.5 160.2 -9.3 -0.8 -2.2 14 14 A T - 0 0 70 1,-0.1 4,-0.4 23,-0.0 -1,-0.1 -0.148 20.3-121.7 -83.9-174.7 -11.4 -2.3 0.6 15 15 A N S > S+ 0 0 47 2,-0.2 4,-1.5 3,-0.1 3,-0.4 0.894 105.8 44.6 -96.1 -58.8 -10.4 -2.4 4.3 16 16 A E T 4 S+ 0 0 147 1,-0.2 4,-0.1 2,-0.2 -1,-0.1 0.786 119.8 47.0 -57.9 -24.1 -10.4 -6.1 5.3 17 17 A D T >4 S+ 0 0 96 1,-0.1 3,-0.8 2,-0.1 4,-0.4 0.769 107.0 52.9 -91.8 -25.6 -8.6 -6.8 2.0 18 18 A L T >> S+ 0 0 0 -3,-0.4 4,-1.5 -4,-0.4 3,-0.9 0.718 86.3 83.4 -82.3 -15.2 -5.9 -4.1 2.3 19 19 A L H 3X S+ 0 0 64 -4,-1.5 4,-2.1 1,-0.3 -1,-0.2 0.771 88.4 57.2 -56.9 -18.9 -4.9 -5.3 5.7 20 20 A D H <> S+ 0 0 117 -3,-0.8 4,-0.6 2,-0.2 5,-0.3 0.855 101.0 53.7 -80.4 -34.0 -2.8 -7.8 3.7 21 21 A Q H <4 S+ 0 0 19 -3,-0.9 4,-0.5 -4,-0.4 -2,-0.2 0.782 122.4 29.9 -70.5 -25.1 -0.9 -5.0 1.9 22 22 A L H X>S+ 0 0 0 -4,-1.5 5,-2.6 2,-0.1 4,-0.6 0.856 115.1 55.2-100.0 -51.4 0.0 -3.4 5.2 23 23 A V H <5S+ 0 0 90 -4,-2.1 -3,-0.2 -5,-0.3 -2,-0.1 0.589 114.8 43.6 -61.4 -6.0 0.2 -6.3 7.7 24 24 A K T <5S+ 0 0 122 -4,-0.6 -1,-0.2 -5,-0.1 -2,-0.1 0.791 101.5 58.2-111.7 -33.8 2.7 -8.1 5.4 25 25 A Y T 45S- 0 0 75 -4,-0.5 -2,-0.1 -5,-0.3 -1,-0.1 0.584 131.3 -88.1 -69.0 -2.9 5.2 -5.5 4.2 26 26 A G T <5S+ 0 0 72 -4,-0.6 2,-0.5 1,-0.3 -3,-0.2 0.714 90.5 136.0 101.6 27.6 5.8 -5.0 7.9 27 27 A V < - 0 0 19 -5,-2.6 -1,-0.3 -8,-0.1 -2,-0.1 -0.927 30.9-178.5-113.8 129.7 3.1 -2.4 8.3 28 28 A N + 0 0 138 -2,-0.5 -5,-0.0 1,-0.1 -9,-0.0 -0.766 14.2 158.9-129.9 90.4 0.6 -2.5 11.2 29 29 A P - 0 0 17 0, 0.0 -1,-0.1 0, 0.0 -10,-0.0 0.935 22.6-168.8 -75.6 -51.0 -2.0 0.3 10.9 30 30 A G + 0 0 44 2,-0.0 2,-1.1 -11,-0.0 -11,-0.0 -0.792 65.5 50.8 100.9-100.0 -4.7 -1.2 13.2 31 31 A P + 0 0 89 0, 0.0 2,-0.7 0, 0.0 0, 0.0 -0.644 59.1 178.2 -79.8 98.9 -7.9 0.9 12.8 32 32 A I + 0 0 17 -2,-1.1 5,-0.2 4,-0.1 4,-0.1 -0.318 17.5 173.4 -96.5 53.7 -8.5 1.2 9.0 33 33 A V >> - 0 0 82 -2,-0.7 3,-1.7 1,-0.2 4,-1.1 0.127 55.4 -86.9 -48.7 177.6 -11.7 3.2 9.4 34 34 A G T 34 S+ 0 0 49 1,-0.3 4,-0.2 2,-0.2 -1,-0.2 0.514 131.8 55.4 -71.3 0.9 -13.3 4.5 6.2 35 35 A T T 34 S+ 0 0 117 2,-0.1 4,-0.4 3,-0.1 -1,-0.3 0.364 101.7 56.3-111.3 1.9 -11.0 7.6 6.6 36 36 A T T X> S+ 0 0 22 -3,-1.7 4,-2.1 2,-0.1 5,-0.6 0.846 81.7 75.8-102.4 -45.1 -7.7 5.6 6.8 37 37 A R H 3X S+ 0 0 43 -4,-1.1 4,-1.3 1,-0.3 5,-0.1 0.881 100.2 50.4 -34.4 -50.8 -7.5 3.5 3.5 38 38 A K H >4 S+ 0 0 125 2,-0.2 3,-0.6 1,-0.2 4,-0.5 0.969 112.5 47.7 -53.3 -51.3 -6.6 6.8 1.7 39 39 A L H X> S+ 0 0 101 -3,-0.5 3,-1.9 -4,-0.4 4,-1.9 0.974 117.0 39.7 -52.9 -61.6 -4.0 7.4 4.4 40 40 A Y H 3X S+ 0 0 46 -4,-2.1 4,-1.3 1,-0.3 5,-0.3 0.613 95.3 86.8 -68.4 -5.8 -2.5 3.9 4.2 41 41 A E H << S+ 0 0 53 -4,-1.3 -1,-0.3 -3,-0.6 -2,-0.2 0.783 110.3 16.9 -64.2 -22.0 -3.0 4.2 0.4 42 42 A K H <> S+ 0 0 69 -3,-1.9 4,-1.8 -4,-0.5 5,-0.3 0.709 114.5 69.8-117.0 -42.4 0.4 5.8 0.5 43 43 A K H < S+ 0 0 117 -4,-1.9 4,-0.3 1,-0.3 -3,-0.2 0.866 113.0 35.4 -45.7 -39.3 2.0 4.9 3.9 44 44 A L T >< S+ 0 0 0 -4,-1.3 3,-0.6 1,-0.2 -1,-0.3 0.736 107.6 67.1 -89.2 -23.6 2.2 1.3 2.6 45 45 A L G >> S+ 0 0 8 -5,-0.3 4,-1.1 1,-0.2 3,-0.9 0.784 90.3 64.6 -68.5 -22.1 3.0 2.4 -1.0 46 46 A K G 3< S+ 0 0 135 -4,-1.8 -1,-0.2 1,-0.3 -2,-0.2 0.876 111.6 36.4 -67.6 -30.6 6.3 3.8 0.3 47 47 A L G <4 S+ 0 0 94 -3,-0.6 -1,-0.3 -4,-0.3 -2,-0.2 0.271 128.8 38.5 -98.4 6.9 7.1 0.1 1.1 48 48 A R T <4 S+ 0 0 14 -3,-0.9 2,-1.8 -6,-0.2 -2,-0.2 0.205 75.8 114.0-141.1 13.4 5.3 -1.0 -2.1 49 49 A E S < S- 0 0 77 -4,-1.1 -4,-0.1 -44,-0.2 -45,-0.1 -0.329 104.4 -87.4 -86.6 59.9 6.2 1.7 -4.7 50 50 A Q - 0 0 131 -2,-1.8 -1,-0.1 -47,-0.1 -46,-0.1 0.832 65.1-111.0 42.2 32.0 8.1 -0.8 -6.9 51 51 A G - 0 0 48 1,-0.1 3,-0.1 -5,-0.1 -46,-0.1 -0.047 29.6-139.9 43.0-147.4 11.0 0.2 -4.6 52 52 A T + 0 0 123 1,-0.4 -1,-0.1 3,-0.1 2,-0.0 0.123 65.4 8.4-171.4 -55.1 13.7 2.2 -6.5 53 53 A E S S- 0 0 142 2,-0.2 -1,-0.4 0, 0.0 0, 0.0 0.056 91.2 -81.7-116.1-132.1 17.3 1.3 -5.7 54 54 A S S S+ 0 0 127 -3,-0.1 2,-0.3 -2,-0.0 -3,-0.0 -0.168 91.2 86.6-135.1 43.8 18.8 -1.5 -3.6 55 55 A R - 0 0 205 0, 0.0 -2,-0.2 0, 0.0 -3,-0.1 -0.953 53.0-156.3-139.5 159.8 18.5 -0.3 -0.0 56 56 A S 0 0 106 1,-0.5 -9,-0.0 -2,-0.3 -5,-0.0 -0.398 360.0 360.0-134.5 60.1 15.8 -0.3 2.7 57 57 A S 0 0 178 0, 0.0 -1,-0.5 0, 0.0 0, 0.0 -0.453 360.0 360.0 64.9 360.0 16.6 2.6 5.1