==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 26-JUN-06 2HG7 . COMPND 2 MOLECULE: PHAGE-LIKE ELEMENT PBSX PROTEIN XKDW; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR G.LIU,D.PARISH,D.XU,H.ATREYA,D.SUKUMARAN,C.K.HO,M.JIANG, . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4919.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 60.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 11.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 30.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 89 0, 0.0 2,-0.5 0, 0.0 28,-0.1 0.000 360.0 360.0 360.0 174.2 -7.2 -5.6 5.7 2 2 A I > - 0 0 61 26,-0.2 4,-1.3 1,-0.1 3,-0.2 -0.955 360.0-157.2-119.4 128.8 -5.6 -2.2 6.0 3 3 A L H > S+ 0 0 19 26,-2.0 4,-3.0 -2,-0.5 5,-0.2 0.863 92.3 65.5 -67.2 -37.6 -4.5 -0.1 3.0 4 4 A Y H > S+ 0 0 88 25,-0.7 4,-2.4 1,-0.2 -1,-0.2 0.897 101.8 48.1 -52.4 -46.6 -2.1 1.9 5.2 5 5 A D H > S+ 0 0 56 2,-0.2 4,-1.2 1,-0.2 -1,-0.2 0.926 112.5 48.2 -61.6 -47.3 0.0 -1.2 5.9 6 6 A A H X S+ 0 0 2 -4,-1.3 4,-1.7 1,-0.2 3,-0.4 0.911 112.5 48.6 -60.2 -44.4 0.2 -2.2 2.2 7 7 A I H X S+ 0 0 2 -4,-3.0 4,-3.4 1,-0.2 -1,-0.2 0.902 109.4 52.5 -63.4 -40.7 1.1 1.4 1.2 8 8 A M H < S+ 0 0 57 -4,-2.4 -1,-0.2 -5,-0.2 -2,-0.2 0.732 106.5 56.0 -68.5 -21.9 3.8 1.5 3.8 9 9 A Y H < S+ 0 0 84 -4,-1.2 -1,-0.2 -3,-0.4 -2,-0.2 0.910 120.4 26.4 -74.7 -43.4 5.2 -1.7 2.5 10 10 A K H < S+ 0 0 107 -4,-1.7 -2,-0.2 1,-0.2 -3,-0.2 0.833 128.8 40.3 -90.8 -35.3 5.7 -0.5 -1.1 11 11 A Y >< + 0 0 63 -4,-3.4 3,-1.0 -5,-0.2 -1,-0.2 -0.760 55.3 160.9-121.6 84.5 6.1 3.2 -0.5 12 12 A P T 3 S+ 0 0 96 0, 0.0 -1,-0.1 0, 0.0 -4,-0.1 0.730 80.4 55.0 -70.9 -22.9 8.3 4.0 2.6 13 13 A N T 3 S+ 0 0 158 -3,-0.1 2,-0.4 2,-0.1 -5,-0.1 0.306 87.9 100.0 -95.9 8.4 8.9 7.5 1.4 14 14 A A < - 0 0 12 -3,-1.0 2,-0.5 -7,-0.2 -3,-0.1 -0.776 66.1-140.1 -96.0 139.9 5.2 8.3 1.1 15 15 A V >>> - 0 0 73 -2,-0.4 4,-2.5 2,-0.0 5,-1.1 -0.872 10.1-134.9-106.2 127.6 3.5 10.3 3.9 16 16 A S B 345S+a 20 0A 15 -2,-0.5 5,-0.2 1,-0.2 -12,-0.0 -0.413 91.8 23.8 -73.1 152.7 0.1 9.5 5.2 17 17 A R T 345S+ 0 0 205 3,-1.8 -1,-0.2 1,-0.2 4,-0.2 0.665 130.3 52.2 65.3 17.0 -2.4 12.4 5.7 18 18 A K T <45S+ 0 0 141 -3,-0.9 -2,-0.2 2,-0.8 -1,-0.2 0.423 116.4 20.5-141.6 -73.7 -0.2 14.2 3.2 19 19 A D T <5S+ 0 0 46 -4,-2.5 16,-2.1 1,-0.3 2,-0.4 0.790 137.5 22.2 -80.3 -29.7 0.5 12.5 -0.1 20 20 A F E - 0 0 78 1,-0.1 4,-3.1 -3,-0.0 5,-0.2 -0.382 25.9 -98.4 -93.8 171.8 -5.4 -3.0 -8.2 43 43 A Q H > S+ 0 0 116 1,-0.2 4,-2.8 2,-0.2 5,-0.2 0.935 125.9 48.2 -53.8 -51.7 -7.1 -5.6 -6.0 44 44 A A H > S+ 0 0 60 1,-0.2 4,-2.8 2,-0.2 -1,-0.2 0.893 112.9 49.3 -56.1 -42.6 -4.4 -8.2 -6.8 45 45 A E H > S+ 0 0 82 2,-0.2 4,-2.4 1,-0.2 -2,-0.2 0.948 111.4 47.8 -62.8 -50.0 -1.7 -5.6 -6.1 46 46 A L H X S+ 0 0 27 -4,-3.1 4,-1.7 1,-0.2 -2,-0.2 0.909 115.3 46.1 -58.0 -44.5 -3.2 -4.6 -2.7 47 47 A E H X S+ 0 0 93 -4,-2.8 4,-3.4 -5,-0.2 -1,-0.2 0.917 109.4 54.6 -65.1 -44.1 -3.6 -8.2 -1.8 48 48 A T H X S+ 0 0 54 -4,-2.8 4,-3.0 1,-0.2 5,-0.2 0.902 107.2 49.8 -59.1 -43.7 -0.0 -9.1 -2.9 49 49 A W H X S+ 0 0 13 -4,-2.4 4,-2.0 2,-0.2 -1,-0.2 0.908 114.5 45.5 -61.3 -40.7 1.5 -6.4 -0.7 50 50 A W H X S+ 0 0 73 -4,-1.7 4,-3.0 -5,-0.2 5,-0.3 0.919 113.1 50.2 -66.3 -44.1 -0.6 -7.7 2.2 51 51 A E H X S+ 0 0 114 -4,-3.4 4,-1.5 1,-0.2 -2,-0.2 0.901 114.7 43.5 -61.3 -42.4 0.4 -11.3 1.4 52 52 A E H X S+ 0 0 93 -4,-3.0 4,-0.6 -5,-0.2 -1,-0.2 0.815 116.8 47.2 -74.3 -30.8 4.1 -10.3 1.2 53 53 A L H < S+ 0 0 19 -4,-2.0 -2,-0.2 -5,-0.2 -1,-0.2 0.881 116.7 41.6 -77.6 -40.0 3.9 -8.2 4.4 54 54 A Q H < S+ 0 0 101 -4,-3.0 -2,-0.2 1,-0.2 -3,-0.2 0.736 116.1 48.3 -83.5 -23.2 2.0 -10.8 6.5 55 55 A K H < S+ 0 0 191 -4,-1.5 -1,-0.2 -5,-0.3 -2,-0.2 0.670 118.8 43.6 -87.0 -16.0 4.0 -13.7 5.2 56 56 A N S < S- 0 0 97 -4,-0.6 -1,-0.3 -5,-0.2 3,-0.1 -0.883 82.7-144.2-133.3 99.4 7.2 -11.8 5.9 57 57 A P - 0 0 100 0, 0.0 -3,-0.1 0, 0.0 -4,-0.0 -0.445 29.9-111.8 -63.1 126.9 7.5 -9.9 9.2 58 58 A P - 0 0 71 0, 0.0 2,-1.7 0, 0.0 -49,-0.0 -0.209 30.9-103.8 -57.9 149.5 9.4 -6.6 8.6 59 59 A Y 0 0 234 -3,-0.1 -3,-0.0 1,-0.0 0, 0.0 -0.622 360.0 360.0 -81.3 87.6 12.8 -6.4 10.3 60 60 A E 0 0 213 -2,-1.7 -1,-0.0 -3,-0.0 0, 0.0 -0.598 360.0 360.0 -72.6 360.0 11.9 -4.1 13.2