==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PEPTIDE HORMONE 30-SEP-98 1HPY . COMPND 2 MOLECULE: PARATHYROID HORMONE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR U.C.MARX,P.ROESCH,K.ADERMANN,P.BAYER,W.-G.FORSSMANN . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3564.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 67.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 47.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 183 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 133.8 26.3 0.1 -2.5 2 2 A V + 0 0 104 1,-0.1 0, 0.0 2,-0.1 0, 0.0 -0.979 360.0 114.7-128.0 138.1 22.7 1.1 -1.5 3 3 A S S > S+ 0 0 89 -2,-0.4 4,-2.7 3,-0.0 5,-0.2 0.178 77.7 48.6-160.8 -59.7 19.7 1.9 -3.7 4 4 A E H > S+ 0 0 109 1,-0.2 4,-2.4 2,-0.2 5,-0.1 0.837 114.7 51.3 -64.7 -30.6 16.9 -0.6 -3.5 5 5 A I H > S+ 0 0 104 2,-0.2 4,-2.6 3,-0.2 -1,-0.2 0.932 110.8 46.4 -74.0 -43.3 17.1 -0.3 0.4 6 6 A Q H > S+ 0 0 114 2,-0.2 4,-2.4 1,-0.2 -2,-0.2 0.950 116.6 45.5 -62.7 -45.9 16.9 3.6 0.2 7 7 A L H X S+ 0 0 99 -4,-2.7 4,-3.0 2,-0.2 -2,-0.2 0.928 111.5 52.9 -62.1 -44.7 13.9 3.3 -2.2 8 8 A M H X S+ 0 0 98 -4,-2.4 4,-2.2 -5,-0.2 -2,-0.2 0.927 110.7 46.9 -57.7 -45.1 12.3 0.6 -0.0 9 9 A H H X S+ 0 0 140 -4,-2.6 4,-1.0 2,-0.2 -1,-0.2 0.930 114.3 47.1 -63.7 -43.9 12.6 2.9 3.1 10 10 A N H X S+ 0 0 63 -4,-2.4 4,-1.1 1,-0.2 3,-0.3 0.896 111.0 52.4 -65.2 -38.3 11.1 5.9 1.0 11 11 A L H < S+ 0 0 72 -4,-3.0 3,-0.5 1,-0.2 4,-0.4 0.910 97.8 65.3 -65.1 -41.4 8.3 3.5 -0.3 12 12 A G H >< S+ 0 0 43 -4,-2.2 3,-1.3 1,-0.3 -1,-0.2 0.878 101.1 50.6 -49.8 -38.6 7.4 2.5 3.3 13 13 A K H 3< S+ 0 0 114 -4,-1.0 -1,-0.3 -3,-0.3 -2,-0.2 0.908 109.3 51.6 -66.3 -37.1 6.3 6.2 3.9 14 14 A H T >< S+ 0 0 115 -4,-1.1 2,-2.5 -3,-0.5 3,-0.8 0.427 77.6 110.8 -76.0 -0.4 4.2 5.9 0.7 15 15 A L T < + 0 0 84 -3,-1.3 -1,-0.2 -4,-0.4 3,-0.1 -0.225 67.3 64.4 -75.8 57.0 2.5 2.6 2.1 16 16 A N T 3 S+ 0 0 120 -2,-2.5 2,-0.3 1,-0.4 -1,-0.2 0.483 95.9 45.5-139.9 -45.5 -0.9 4.4 2.4 17 17 A S S < S+ 0 0 93 -3,-0.8 -1,-0.4 3,-0.1 3,-0.3 -0.875 101.4 16.5-113.5 145.5 -2.1 5.4 -1.1 18 18 A M S S+ 0 0 124 -2,-0.3 2,-2.7 1,-0.2 -2,-0.1 0.685 129.0 11.2 67.6 125.6 -2.1 3.3 -4.4 19 19 A E S > S+ 0 0 139 1,-0.2 3,-0.7 -4,-0.0 4,-0.5 -0.371 132.4 54.3 75.2 -60.9 -1.8 -0.6 -4.2 20 20 A R T >> S+ 0 0 40 -2,-2.7 3,-2.5 -3,-0.3 4,-0.8 0.957 94.4 69.7 -60.6 -52.4 -2.3 -0.2 -0.4 21 21 A V H 3> S+ 0 0 60 1,-0.3 4,-4.2 2,-0.2 -1,-0.2 0.732 86.5 65.7 -35.7 -40.7 -5.5 1.7 -1.1 22 22 A E H <> S+ 0 0 65 -3,-0.7 4,-3.2 2,-0.2 5,-0.3 0.876 96.2 56.8 -61.1 -32.8 -7.2 -1.6 -2.4 23 23 A W H <> S+ 0 0 158 -3,-2.5 4,-1.2 -4,-0.5 -1,-0.2 0.961 118.0 33.2 -56.9 -51.6 -6.9 -3.0 1.2 24 24 A L H X S+ 0 0 89 -4,-0.8 4,-2.0 2,-0.2 5,-0.3 0.923 118.0 54.0 -70.8 -48.3 -8.9 0.1 2.4 25 25 A R H X S+ 0 0 122 -4,-4.2 4,-1.0 1,-0.2 -2,-0.2 0.911 116.0 39.3 -55.6 -44.7 -11.1 0.2 -0.8 26 26 A K H X S+ 0 0 103 -4,-3.2 4,-1.7 -5,-0.2 -1,-0.2 0.755 107.1 66.4 -78.9 -23.2 -12.1 -3.5 -0.4 27 27 A K H < S+ 0 0 88 -4,-1.2 3,-0.3 -5,-0.3 -2,-0.2 0.953 105.3 42.1 -64.0 -45.6 -12.4 -3.0 3.4 28 28 A L H < S+ 0 0 96 -4,-2.0 5,-0.2 1,-0.2 -1,-0.2 0.862 110.5 58.7 -69.1 -30.3 -15.4 -0.7 2.9 29 29 A Q H >X S+ 0 0 55 -4,-1.0 4,-0.9 -5,-0.3 3,-0.7 0.859 99.5 72.2 -63.7 -32.3 -16.7 -3.1 0.2 30 30 A D T 3< S+ 0 0 88 -4,-1.7 4,-0.1 -3,-0.3 0, 0.0 -0.619 107.3 11.1 -86.4 141.1 -16.7 -5.8 2.9 31 31 A V T 34 S+ 0 0 129 -2,-0.3 -1,-0.2 1,-0.1 -2,-0.1 0.708 120.7 71.5 64.8 23.0 -19.4 -5.7 5.7 32 32 A H T <4 S- 0 0 137 -3,-0.7 -2,-0.1 -5,-0.0 -3,-0.1 0.608 114.5 -73.7-126.4 -65.0 -21.4 -2.9 3.7 33 33 A N < 0 0 138 -4,-0.9 -2,-0.1 -5,-0.2 -4,-0.1 0.152 360.0 360.0-167.3 -54.7 -23.0 -4.4 0.5 34 34 A F 0 0 189 -6,-0.2 -1,-0.1 -4,-0.1 -4,-0.1 -0.989 360.0 360.0-153.5 360.0 -20.5 -5.2 -2.4