==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-MAR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 26-JUN-09 3I1G . COMPND 2 MOLECULE: GENERAL CONTROL PROTEIN GCN4; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.S.DIAO,A.TORTAJADA,J.I.YEH . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3273.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 87.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 77.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A M 0 0 192 0, 0.0 5,-0.1 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 136.1 0.7 15.6 8.7 2 3 A A >> - 0 0 59 1,-0.2 3,-1.6 3,-0.0 4,-0.8 -0.309 360.0-125.8 -63.0 142.5 0.1 15.4 5.0 3 4 A Q H 3> S+ 0 0 177 1,-0.3 4,-1.4 2,-0.2 -1,-0.2 0.648 109.6 72.8 -62.6 -13.7 -3.0 13.7 3.8 4 5 A L H 3> S+ 0 0 126 1,-0.2 4,-2.0 2,-0.2 -1,-0.3 0.878 90.9 55.1 -67.9 -37.8 -0.6 11.6 1.8 5 6 A E H <> S+ 0 0 93 -3,-1.6 4,-2.0 1,-0.2 -1,-0.2 0.871 105.4 52.6 -62.9 -37.7 0.4 9.9 5.0 6 7 A A H X S+ 0 0 46 -4,-0.8 4,-1.8 1,-0.2 -1,-0.2 0.857 108.4 50.3 -66.3 -36.5 -3.2 9.0 5.6 7 8 A K H X S+ 0 0 102 -4,-1.4 4,-1.8 2,-0.2 -2,-0.2 0.870 109.9 49.4 -70.9 -36.3 -3.5 7.5 2.2 8 9 A V H X S+ 0 0 73 -4,-2.0 4,-1.9 2,-0.2 -2,-0.2 0.883 110.6 51.7 -69.0 -36.3 -0.3 5.4 2.6 9 10 A E H X S+ 0 0 98 -4,-2.0 4,-2.8 2,-0.2 -2,-0.2 0.876 107.8 51.9 -65.3 -37.9 -1.7 4.2 6.0 10 11 A E H X S+ 0 0 117 -4,-1.8 4,-2.5 1,-0.2 -1,-0.2 0.889 109.1 50.4 -65.0 -40.2 -5.0 3.2 4.3 11 12 A L H X S+ 0 0 111 -4,-1.8 4,-1.7 2,-0.2 -1,-0.2 0.868 112.3 47.1 -65.8 -38.4 -3.0 1.2 1.8 12 13 A L H X S+ 0 0 81 -4,-1.9 4,-2.4 2,-0.2 -2,-0.2 0.926 113.0 48.1 -69.7 -45.0 -1.1 -0.5 4.6 13 14 A S H X S+ 0 0 53 -4,-2.8 4,-2.5 1,-0.2 -2,-0.2 0.891 112.1 48.9 -63.1 -41.3 -4.2 -1.3 6.6 14 15 A K H X S+ 0 0 132 -4,-2.5 4,-2.3 2,-0.2 -1,-0.2 0.885 109.9 52.9 -65.2 -38.9 -6.0 -2.7 3.5 15 16 A N H X S+ 0 0 75 -4,-1.7 4,-2.5 1,-0.2 -2,-0.2 0.933 110.6 47.4 -61.3 -45.1 -3.0 -4.8 2.8 16 17 A W H X S+ 0 0 135 -4,-2.4 4,-2.4 1,-0.2 -2,-0.2 0.901 110.9 50.4 -64.8 -42.7 -3.0 -6.2 6.3 17 18 A N H X S+ 0 0 107 -4,-2.5 4,-1.8 2,-0.2 -1,-0.2 0.890 112.1 47.7 -63.2 -39.5 -6.8 -6.9 6.2 18 19 A L H X S+ 0 0 88 -4,-2.3 4,-2.6 2,-0.2 -2,-0.2 0.928 113.1 48.0 -66.5 -45.3 -6.4 -8.8 2.9 19 20 A E H X S+ 0 0 104 -4,-2.5 4,-2.2 1,-0.2 -2,-0.2 0.875 112.4 49.0 -62.6 -39.1 -3.5 -10.8 4.2 20 21 A N H X S+ 0 0 82 -4,-2.4 4,-2.2 2,-0.2 -1,-0.2 0.850 110.1 51.2 -70.8 -33.4 -5.3 -11.7 7.4 21 22 A E H X S+ 0 0 101 -4,-1.8 4,-2.1 2,-0.2 -2,-0.2 0.948 112.3 46.3 -65.9 -48.3 -8.4 -12.7 5.4 22 23 A V H X S+ 0 0 75 -4,-2.6 4,-2.2 1,-0.2 -2,-0.2 0.874 111.2 53.0 -60.8 -39.0 -6.2 -15.0 3.2 23 24 A A H X S+ 0 0 52 -4,-2.2 4,-1.7 1,-0.2 -1,-0.2 0.903 109.6 47.9 -64.6 -41.8 -4.5 -16.3 6.3 24 25 A R H X S+ 0 0 154 -4,-2.2 4,-1.8 1,-0.2 -1,-0.2 0.841 110.8 51.7 -68.1 -32.7 -7.8 -17.2 7.9 25 26 A L H X S+ 0 0 88 -4,-2.1 4,-2.0 2,-0.2 6,-0.2 0.883 106.9 53.6 -70.3 -36.5 -9.0 -18.9 4.7 26 27 A K H <>S+ 0 0 93 -4,-2.2 5,-2.2 1,-0.2 4,-0.5 0.890 109.1 48.9 -63.4 -39.3 -5.8 -20.9 4.6 27 28 A K H ><5S+ 0 0 175 -4,-1.7 3,-0.7 3,-0.2 -1,-0.2 0.885 108.0 54.8 -67.7 -39.1 -6.5 -22.1 8.1 28 29 A L H 3<5S+ 0 0 144 -4,-1.8 -2,-0.2 1,-0.2 -1,-0.2 0.906 113.9 39.7 -60.1 -44.4 -10.1 -23.0 7.2 29 30 A V T 3<5S- 0 0 114 -4,-2.0 -1,-0.2 -5,-0.1 -2,-0.2 0.425 119.0-108.6 -87.2 0.3 -9.0 -25.3 4.3 30 31 A G T < 5 0 0 67 -3,-0.7 -3,-0.2 -4,-0.5 -4,-0.1 0.515 360.0 360.0 88.4 5.2 -6.0 -26.7 6.2 31 32 A E < 0 0 159 -5,-2.2 -1,-0.2 -6,-0.2 -2,-0.0 -0.298 360.0 360.0 -77.5 360.0 -3.2 -24.9 4.3