==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 06-FEB-01 1I25 . COMPND 2 MOLECULE: HUWENTOXIN-II; . SOURCE 2 ORGANISM_SCIENTIFIC: ORNITHOCTONUS HUWENA; . AUTHOR Q.SHU,S.Y.LU,X.C.GU,S.P.LIANG . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3625.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 37.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 140 0, 0.0 17,-0.1 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 115.0 -10.2 8.8 2.3 2 2 A F - 0 0 194 15,-0.3 17,-1.8 1,-0.1 2,-0.0 -0.367 360.0 -88.5 -74.8 157.6 -6.8 8.7 4.1 3 3 A E B -a 19 0A 87 15,-0.2 2,-0.5 1,-0.1 17,-0.1 -0.363 44.9-113.1 -65.6 143.3 -3.8 7.1 2.3 4 4 A a - 0 0 3 15,-1.5 17,-0.1 3,-0.2 -1,-0.1 -0.651 31.4-179.2 -81.5 126.4 -3.4 3.3 2.9 5 5 A S S S+ 0 0 104 -2,-0.5 -1,-0.2 1,-0.1 3,-0.1 0.817 83.9 41.8 -93.3 -35.1 -0.4 2.3 4.9 6 6 A F S S+ 0 0 132 1,-0.1 2,-0.3 27,-0.1 -1,-0.1 0.311 116.1 53.8 -94.8 11.1 -0.8 -1.5 4.9 7 7 A S + 0 0 2 12,-0.1 14,-0.6 1,-0.1 -3,-0.2 -0.910 43.7 156.5-148.2 118.9 -1.9 -1.6 1.2 8 8 A b S S+ 0 0 19 -2,-0.3 24,-0.1 22,-0.2 -1,-0.1 0.714 81.3 44.3-109.9 -32.1 -0.0 -0.2 -1.8 9 9 A E S S+ 0 0 121 22,-0.5 2,-0.2 21,-0.3 23,-0.1 0.953 120.2 29.6 -79.4 -52.5 -1.5 -2.4 -4.7 10 10 A I S S- 0 0 81 21,-0.6 2,-0.4 2,-0.2 -1,-0.1 -0.705 78.8-121.8-106.5 160.8 -5.2 -2.3 -3.8 11 11 A E S S+ 0 0 99 -2,-0.2 7,-1.9 9,-0.1 2,-0.4 -0.156 82.3 99.7 -91.9 42.6 -7.2 0.4 -1.9 12 12 A K B +B 17 0B 152 -2,-0.4 -2,-0.2 5,-0.2 -3,-0.1 -0.939 40.7 175.9-132.3 114.0 -8.3 -2.0 0.9 13 13 A E - 0 0 90 3,-1.3 -1,-0.1 -2,-0.4 -2,-0.0 0.885 59.2 -96.8 -82.9 -40.1 -6.5 -2.0 4.3 14 14 A G S S+ 0 0 74 2,-0.6 -2,-0.0 -7,-0.0 -1,-0.0 -0.142 110.2 33.8 152.4 -46.8 -8.8 -4.6 5.9 15 15 A D S S+ 0 0 138 1,-0.3 -3,-0.0 2,-0.0 0, 0.0 0.803 123.0 17.9-103.7 -41.7 -11.4 -2.7 8.0 16 16 A K S S- 0 0 122 1,-0.0 -3,-1.3 0, 0.0 -2,-0.6 -0.908 81.6-100.0-131.4 161.0 -12.0 0.5 5.9 17 17 A P B +B 12 0B 93 0, 0.0 2,-0.3 0, 0.0 -15,-0.3 -0.304 43.2 176.3 -73.2 159.1 -11.4 1.7 2.3 18 18 A a - 0 0 9 -7,-1.9 -15,-0.2 -17,-0.1 2,-0.1 -0.921 27.7 -96.5-153.3 178.6 -8.3 3.9 1.5 19 19 A K B -a 3 0A 92 -17,-1.8 -15,-1.5 -2,-0.3 2,-0.4 -0.482 50.0 -84.4 -97.8 172.7 -6.4 5.6 -1.3 20 20 A K - 0 0 137 -17,-0.1 2,-0.4 -2,-0.1 -12,-0.1 -0.617 42.4-144.2 -79.4 130.5 -3.3 4.4 -3.2 21 21 A K - 0 0 81 -14,-0.6 2,-0.9 -2,-0.4 -1,-0.0 -0.778 7.6-134.2 -96.7 137.1 -0.0 5.2 -1.3 22 22 A K - 0 0 191 -2,-0.4 3,-0.1 7,-0.0 -14,-0.0 -0.764 23.9-157.7 -91.7 108.5 3.1 6.1 -3.3 23 23 A c - 0 0 45 -2,-0.9 6,-0.1 1,-0.2 4,-0.0 -0.143 35.6 -70.3 -74.6 177.2 6.1 4.2 -1.8 24 24 A K > - 0 0 157 1,-0.1 3,-1.1 2,-0.1 -1,-0.2 -0.167 42.0-114.1 -64.9 164.0 9.7 5.3 -2.3 25 25 A G T 3 S+ 0 0 85 1,-0.3 -1,-0.1 -3,-0.1 -2,-0.1 0.869 118.7 47.8 -69.2 -34.7 11.4 5.1 -5.8 26 26 A G T 3 S+ 0 0 47 2,-0.0 11,-1.5 10,-0.0 2,-0.3 0.236 101.7 86.1 -90.3 16.8 13.9 2.4 -4.5 27 27 A W E < -C 36 0C 107 -3,-1.1 2,-0.5 9,-0.2 9,-0.3 -0.896 67.2-144.8-117.6 147.3 11.0 0.4 -2.9 28 28 A K E -C 35 0C 133 7,-3.2 7,-2.6 -2,-0.3 2,-0.4 -0.930 12.0-138.2-113.8 127.4 8.8 -2.2 -4.6 29 29 A b E -C 34 0C 36 -2,-0.5 5,-0.2 5,-0.2 2,-0.0 -0.663 25.0-175.6 -83.3 130.4 5.1 -2.6 -3.6 30 30 A K - 0 0 140 3,-1.9 -21,-0.3 -2,-0.4 -22,-0.2 0.013 51.6 -53.9-102.8-148.1 3.9 -6.2 -3.3 31 31 A F S S- 0 0 166 1,-0.2 -21,-0.6 -22,-0.1 -22,-0.5 0.987 124.9 -22.1 -57.9 -60.6 0.4 -7.7 -2.7 32 32 A N S S+ 0 0 64 -25,-0.1 2,-0.3 1,-0.1 -1,-0.2 -0.020 128.1 66.5-142.3 32.9 -0.3 -5.6 0.5 33 33 A M - 0 0 98 -26,-0.1 -3,-1.9 2,-0.0 2,-0.5 -0.935 67.2-136.8-157.3 130.4 3.2 -4.7 1.8 34 34 A c E +C 29 0C 18 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.764 29.5 173.0 -92.3 127.5 6.0 -2.4 0.4 35 35 A V E -C 28 0C 75 -7,-2.6 -7,-3.2 -2,-0.5 -2,-0.0 -0.962 40.7 -89.0-132.3 150.3 9.6 -3.8 0.6 36 36 A K E C 27 0C 144 -2,-0.3 -9,-0.2 -9,-0.3 -10,-0.0 -0.248 360.0 360.0 -55.6 140.5 12.9 -2.5 -0.8 37 37 A V 0 0 149 -11,-1.5 -1,-0.1 0, 0.0 -11,-0.0 -0.486 360.0 360.0 -82.7 360.0 13.6 -3.8 -4.4