==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PHOSHPHOTRANSFERASE 23-MAR-96 1IBA . COMPND 2 MOLECULE: GLUCOSE PERMEASE; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR M.EBERSTADT,S.G.GRDADOLNIK,G.GEMMECKER,H.KESSLER,A.BUHR, . 78 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5193.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 64.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 14.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 6.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 11.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 26.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 15 A M >> 0 0 186 0, 0.0 4,-1.6 0, 0.0 3,-1.4 0.000 360.0 360.0 360.0 -43.5 -0.2 8.2 10.0 2 16 A A H 3> + 0 0 22 1,-0.3 4,-1.0 2,-0.2 3,-0.4 0.848 360.0 51.1 -48.6 -42.8 -1.8 4.9 9.1 3 17 A P H 34 S+ 0 0 40 0, 0.0 -1,-0.3 0, 0.0 4,-0.2 0.769 121.5 34.9 -71.1 -18.9 -4.9 6.7 7.6 4 18 A A H <> S+ 0 0 62 -3,-1.4 4,-1.7 2,-0.1 -2,-0.2 0.471 106.2 72.4 -99.6 -5.9 -2.4 8.8 5.5 5 19 A L H >< S+ 0 0 16 -4,-1.6 3,-1.8 -3,-0.4 4,-0.5 0.990 99.2 43.1 -75.2 -68.5 0.1 6.0 5.0 6 20 A V T >X>S+ 0 0 44 -4,-1.0 5,-1.3 1,-0.3 4,-1.2 0.794 113.8 56.3 -38.3 -37.0 -1.9 4.0 2.5 7 21 A A H 3>5S+ 0 0 46 -5,-0.3 4,-0.6 1,-0.2 -1,-0.3 0.917 90.5 72.7 -65.3 -40.2 -2.7 7.3 0.9 8 22 A A H <<5S- 0 0 19 -3,-1.8 -1,-0.2 -4,-1.7 -2,-0.2 0.611 124.9 -1.4 -48.2 -19.7 1.0 8.1 0.5 9 23 A F H X45S+ 0 0 6 -3,-1.2 3,-1.2 -4,-0.5 6,-0.2 0.502 138.8 43.8-140.1 -53.9 1.3 5.6 -2.4 10 24 A G H 3<5S+ 0 0 32 -4,-1.2 -3,-0.2 1,-0.2 -2,-0.1 0.805 116.1 52.4 -65.8 -28.3 -2.0 3.8 -3.1 11 25 A G T 3< - 0 0 59 3,-0.5 3,-1.2 1,-0.1 -2,-0.0 -0.974 55.2 -62.1-163.9 170.2 -5.9 -7.9 -6.9 22 36 A I T 3 S- 0 0 145 1,-0.3 -1,-0.1 -2,-0.3 3,-0.1 0.711 126.1 -17.7 -25.0 -63.2 -7.6 -10.3 -4.4 23 37 A T T 3 S+ 0 0 47 1,-0.1 36,-1.9 -3,-0.0 2,-0.3 -0.021 128.2 80.1-137.4 31.6 -4.8 -9.9 -1.8 24 38 A R E < +B 58 0B 87 -3,-1.2 -3,-0.5 34,-0.3 34,-0.2 -0.980 48.2 172.7-145.2 122.0 -2.0 -8.5 -4.0 25 39 A L E -B 57 0B 36 32,-1.1 32,-2.9 -2,-0.3 2,-0.3 -0.728 9.6-163.8-121.7 173.0 -1.5 -4.9 -5.2 26 40 A R E -B 56 0B 76 30,-0.3 -7,-0.4 -2,-0.2 30,-0.3 -0.967 10.6-161.4-154.3 159.3 1.5 -3.4 -7.1 27 41 A V - 0 0 2 28,-1.6 2,-1.1 -2,-0.3 -9,-0.2 -0.494 8.8-175.3-148.9 69.0 2.7 0.3 -7.7 28 42 A S B +A 17 0A 30 -11,-0.5 -11,-0.7 26,-0.1 2,-0.2 -0.557 37.9 116.0 -78.7 95.4 5.1 0.5 -10.6 29 43 A V - 0 0 21 -2,-1.1 24,-0.3 -13,-0.1 -2,-0.1 -0.876 67.8-122.7-148.9 175.5 6.2 4.2 -10.7 30 44 A A S > S+ 0 0 90 -2,-0.2 2,-2.5 1,-0.1 3,-0.5 0.372 76.9 106.1-107.0 2.3 9.0 6.9 -10.3 31 45 A D T 3 + 0 0 70 1,-0.2 3,-0.2 2,-0.1 -1,-0.1 -0.333 43.2 116.5 -73.0 60.0 7.3 9.0 -7.5 32 46 A V T 3 + 0 0 77 -2,-2.5 3,-0.3 1,-0.1 -1,-0.2 0.419 30.2 111.1-103.4 -1.1 9.9 7.5 -5.1 33 47 A S S < S- 0 0 120 -3,-0.5 -1,-0.1 1,-0.2 -2,-0.1 0.820 110.5 -14.2 -36.2 -44.1 11.6 10.9 -4.4 34 48 A K S S+ 0 0 123 -3,-0.2 -1,-0.2 3,-0.0 -2,-0.1 0.108 91.8 154.1-150.7 26.6 10.1 10.5 -0.8 35 49 A V - 0 0 21 -3,-0.3 2,-0.7 1,-0.1 3,-0.3 -0.254 43.6-134.2 -63.0 149.8 7.5 7.8 -0.9 36 50 A D > + 0 0 86 1,-0.2 4,-2.7 -31,-0.2 -1,-0.1 -0.547 56.0 136.7 -98.7 65.7 6.8 5.9 2.4 37 51 A Q H > + 0 0 24 -2,-0.7 4,-2.1 2,-0.2 5,-0.3 0.945 67.4 64.3 -70.7 -46.8 6.9 2.4 0.9 38 52 A A H > S+ 0 0 78 -3,-0.3 4,-0.6 1,-0.3 -1,-0.2 0.801 115.5 32.2 -45.7 -34.6 8.9 1.2 3.9 39 53 A G H >>S+ 0 0 21 2,-0.1 4,-2.3 1,-0.1 5,-0.6 0.865 115.7 57.3 -84.7 -42.4 5.8 2.1 5.9 40 54 A L H <>S+ 0 0 6 -4,-2.7 5,-2.2 3,-0.2 -2,-0.2 0.594 105.1 54.9 -66.0 -9.6 3.2 1.2 3.2 41 55 A K H <5S+ 0 0 75 -4,-2.1 6,-1.9 3,-0.2 -1,-0.2 0.874 119.5 26.0 -91.1 -44.9 4.6 -2.3 3.0 42 56 A K H <5S+ 0 0 160 -4,-0.6 -2,-0.2 -5,-0.3 -3,-0.1 0.580 139.4 30.4 -88.9 -14.6 4.3 -3.5 6.6 43 57 A L T <5S+ 0 0 47 -4,-2.3 -3,-0.2 -5,-0.0 -2,-0.1 0.708 130.0 30.5-114.3 -36.9 1.4 -1.0 7.3 44 58 A G T -C 54 0B 41 3,-2.5 3,-2.6 -2,-0.4 -2,-0.0 -0.745 44.1-114.1-142.4 87.5 12.8 -3.1 -8.2 52 66 A G T 3 S+ 0 0 83 1,-0.3 3,-0.1 -2,-0.3 -22,-0.1 0.081 113.8 41.5 -26.4 107.6 13.9 0.0 -10.1 53 67 A S T 3 S+ 0 0 117 -24,-0.3 -1,-0.3 0, 0.0 2,-0.3 -0.167 130.5 0.3 127.1 -33.6 11.5 -0.3 -13.1 54 68 A G E < - C 0 51B 15 -3,-2.6 -3,-2.5 -26,-0.1 2,-0.3 -0.972 59.8-135.3-171.9 174.3 8.5 -1.4 -10.9 55 69 A V E - C 0 50B 11 -2,-0.3 -28,-1.6 -5,-0.2 2,-0.3 -0.982 15.0-155.7-143.0 144.6 7.3 -2.1 -7.3 56 70 A Q E -BC 26 49B 73 -7,-2.7 -7,-2.6 -2,-0.3 2,-0.3 -0.976 4.9-163.6-129.2 143.2 5.1 -5.0 -6.1 57 71 A A E -BC 25 48B 2 -32,-2.9 -32,-1.1 -2,-0.3 2,-0.4 -0.932 1.7-167.7-128.9 144.2 2.8 -5.1 -3.0 58 72 A I E -B 24 0B 61 -11,-2.1 -12,-2.4 -2,-0.3 -34,-0.3 -0.967 13.5-179.9-139.3 118.6 1.4 -8.1 -1.2 59 73 A F + 0 0 24 -36,-1.9 8,-0.2 -2,-0.4 -35,-0.1 -0.268 47.3 122.4-110.9 42.9 -1.4 -8.0 1.4 60 74 A G + 0 0 10 -13,-0.1 2,-2.0 -14,-0.1 -2,-0.1 -0.022 61.1 23.0 -85.2-166.7 -1.6 -11.8 2.0 61 75 A T S S+ 0 0 129 1,-0.3 2,-0.4 2,-0.1 3,-0.3 -0.181 133.7 34.8 53.6 -74.6 -1.0 -13.7 5.2 62 76 A K S > S+ 0 0 119 -2,-2.0 4,-1.8 1,-0.2 -1,-0.3 -0.469 83.2 128.6-105.1 54.7 -1.9 -10.8 7.6 63 77 A S H > S+ 0 0 11 -2,-0.4 4,-3.6 2,-0.2 5,-0.3 0.954 70.7 48.3 -75.8 -50.8 -4.5 -9.6 5.1 64 78 A D H > S+ 0 0 121 -3,-0.3 4,-2.3 1,-0.2 -1,-0.2 0.866 112.7 50.2 -57.3 -38.3 -7.3 -9.4 7.6 65 79 A N H > S+ 0 0 96 2,-0.2 4,-2.0 3,-0.2 -1,-0.2 0.942 116.8 38.9 -66.4 -47.0 -5.0 -7.5 10.1 66 80 A L H X S+ 0 0 6 -4,-1.8 4,-2.7 2,-0.2 -2,-0.2 0.955 117.1 49.5 -69.3 -49.2 -3.9 -4.9 7.4 67 81 A K H X S+ 0 0 93 -4,-3.6 4,-3.2 2,-0.2 -1,-0.2 0.873 107.6 56.6 -55.2 -37.7 -7.3 -4.7 5.9 68 82 A T H X S+ 0 0 82 -4,-2.3 4,-2.4 -5,-0.3 -1,-0.2 0.953 107.0 48.1 -58.4 -46.7 -8.6 -4.2 9.5 69 83 A E H X S+ 0 0 70 -4,-2.0 4,-1.4 1,-0.2 -2,-0.2 0.929 111.0 51.7 -59.0 -41.5 -6.2 -1.2 9.7 70 84 A M H >X S+ 0 0 67 -4,-2.7 4,-1.3 1,-0.2 3,-0.9 0.951 106.9 52.7 -56.7 -48.3 -7.6 -0.0 6.3 71 85 A D H 3X S+ 0 0 71 -4,-3.2 4,-2.1 1,-0.3 3,-0.3 0.916 104.8 56.7 -54.1 -46.0 -11.1 -0.3 7.7 72 86 A E H 3X S+ 0 0 108 -4,-2.4 4,-2.6 1,-0.2 -1,-0.3 0.842 101.8 57.7 -50.4 -39.9 -10.1 1.9 10.7 73 87 A Y H < S+ 0 0 179 -4,-2.1 3,-0.5 1,-0.2 -1,-0.2 0.843 114.0 46.5 -67.4 -31.8 -14.0 4.9 9.9 76 90 A N H 3< S+ 0 0 105 -4,-2.6 -2,-0.2 -5,-0.2 -1,-0.2 0.693 126.1 30.4 -79.1 -19.5 -11.4 7.4 11.2 77 91 A F T 3< 0 0 172 -4,-1.7 -1,-0.2 -5,-0.2 -2,-0.2 -0.092 360.0 360.0-128.0 33.2 -11.9 9.7 8.2 78 92 A G < 0 0 102 -3,-0.5 -3,-0.1 -5,-0.1 -2,-0.1 0.540 360.0 360.0 -83.9 360.0 -15.5 9.0 7.3