==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER BACTERIOCIN 30-MAY-96 1IMP . COMPND 2 MOLECULE: IM9; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR M.J.OSBORNE,A.L.BREEZE,L.-Y.LIAN,A.REILLY,R.JAMES, . 86 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5717.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 65.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 14.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 34 39.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 229 0, 0.0 4,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 23.0 13.5 -5.0 -10.5 2 2 A E + 0 0 193 2,-0.0 2,-0.0 0, 0.0 0, 0.0 0.744 360.0 61.9 -64.4 -18.2 10.7 -7.6 -10.2 3 3 A L S S- 0 0 59 1,-0.2 2,-0.1 2,-0.0 0, 0.0 0.010 90.6-111.1 -88.6-158.5 8.7 -4.8 -8.7 4 4 A K - 0 0 126 1,-0.1 -1,-0.2 2,-0.0 3,-0.1 -0.372 25.9-100.9-121.2-159.0 7.6 -1.6 -10.4 5 5 A H S S- 0 0 161 1,-0.3 2,-0.2 -2,-0.1 -1,-0.1 0.899 81.8 -32.0 -95.5 -58.1 8.6 2.1 -9.9 6 6 A S S > S- 0 0 24 38,-0.0 3,-1.6 0, 0.0 4,-0.4 -0.715 82.1 -63.2-145.2-164.2 5.7 3.7 -7.9 7 7 A I G > S+ 0 0 0 36,-0.7 3,-1.0 1,-0.3 77,-0.5 0.738 120.6 74.8 -64.6 -19.1 1.9 3.5 -7.4 8 8 A S G 3 S+ 0 0 59 1,-0.3 -1,-0.3 75,-0.2 77,-0.2 0.799 92.9 53.1 -65.2 -23.5 1.5 4.5 -11.1 9 9 A D G < S+ 0 0 23 -3,-1.6 2,-0.5 75,-0.1 -1,-0.3 0.652 106.8 61.8 -84.7 -13.5 2.6 0.9 -12.0 10 10 A Y S < S- 0 0 21 -3,-1.0 74,-0.9 -4,-0.4 -1,-0.1 -0.942 80.3-142.1-114.8 127.3 -0.1 -0.4 -9.6 11 11 A T > - 0 0 20 -2,-0.5 4,-2.2 72,-0.3 5,-0.4 -0.098 41.3 -89.6 -73.8-178.0 -3.8 0.3 -10.3 12 12 A E H > S+ 0 0 88 1,-0.2 4,-0.6 2,-0.2 -1,-0.1 0.759 132.8 37.2 -67.2 -18.4 -6.2 1.0 -7.5 13 13 A A H > S+ 0 0 52 2,-0.2 4,-1.8 3,-0.1 -1,-0.2 0.834 114.0 51.4 -99.1 -43.0 -6.8 -2.8 -7.4 14 14 A E H > S+ 0 0 72 2,-0.2 4,-1.1 1,-0.2 -2,-0.2 0.896 118.1 42.0 -62.3 -34.7 -3.3 -4.1 -8.2 15 15 A F H >X S+ 0 0 0 -4,-2.2 4,-1.8 2,-0.2 3,-0.6 0.938 110.1 54.7 -76.7 -46.1 -2.1 -1.8 -5.3 16 16 A L H 3X S+ 0 0 45 -4,-0.6 4,-0.9 -5,-0.4 -2,-0.2 0.825 104.6 58.6 -57.0 -24.5 -5.0 -2.7 -3.1 17 17 A Q H 3X S+ 0 0 102 -4,-1.8 4,-2.4 2,-0.2 -1,-0.3 0.910 102.4 52.6 -71.9 -38.9 -3.9 -6.3 -3.8 18 18 A L H S+ 0 0 40 -4,-0.9 4,-1.6 -5,-0.3 5,-0.7 0.970 101.5 52.2 -72.8 -51.1 -3.8 -7.3 1.1 21 21 A T H <>S+ 0 0 38 -4,-2.4 5,-1.6 -3,-0.2 6,-0.6 0.768 118.3 43.2 -56.1 -20.1 -0.8 -9.6 0.8 22 22 A I H <5S+ 0 0 1 -4,-1.5 3,-0.2 3,-0.2 -2,-0.2 0.919 119.4 34.4 -90.1 -70.1 0.6 -7.6 3.7 23 23 A C H <5S+ 0 0 42 -4,-2.3 -3,-0.2 1,-0.3 -2,-0.1 0.965 127.5 40.9 -49.3 -57.9 -2.3 -7.1 6.2 24 24 A N T <5S- 0 0 97 -4,-1.6 -1,-0.3 -5,-0.4 -3,-0.2 0.784 106.3-138.6 -63.5 -22.8 -3.8 -10.5 5.4 25 25 A A T < + 0 0 52 -5,-0.7 -3,-0.2 -3,-0.2 -4,-0.2 1.000 40.2 162.9 62.7 68.1 -0.2 -11.9 5.4 26 26 A D < + 0 0 122 -5,-1.6 -4,-0.1 -6,-0.2 -1,-0.1 0.266 40.1 106.3-101.2 12.0 -0.5 -14.1 2.3 27 27 A T S S- 0 0 32 -6,-0.6 3,-0.1 -5,-0.1 -5,-0.0 -0.143 80.3-118.5 -79.4-178.0 3.3 -14.4 1.9 28 28 A S S S+ 0 0 109 1,-0.2 2,-0.3 2,-0.0 -1,-0.1 0.212 95.4 29.6-106.8 13.3 5.4 -17.4 2.8 29 29 A S S > S- 0 0 60 1,-0.1 4,-0.9 2,-0.0 -1,-0.2 -0.948 72.2-126.6-167.9 145.7 7.4 -15.5 5.4 30 30 A E H > S+ 0 0 169 -2,-0.3 4,-1.2 1,-0.2 3,-0.2 0.828 110.0 61.7 -67.8 -28.2 6.9 -12.6 7.8 31 31 A E H >> S+ 0 0 148 1,-0.2 4,-2.3 2,-0.2 3,-0.6 0.934 101.3 50.4 -64.9 -42.9 10.0 -10.9 6.4 32 32 A E H 3> S+ 0 0 101 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.778 104.8 60.1 -66.7 -21.7 8.4 -10.7 2.9 33 33 A L H 3X S+ 0 0 17 -4,-0.9 4,-1.5 2,-0.2 -1,-0.2 0.833 106.9 45.5 -75.2 -28.7 5.4 -9.1 4.6 34 34 A V H X S+ 0 0 0 -4,-1.6 4,-1.6 1,-0.2 3,-1.0 0.934 104.9 54.7 -50.9 -44.2 3.8 0.4 0.1 41 41 A E H 3X S+ 0 0 71 -4,-2.1 4,-1.2 1,-0.3 -1,-0.2 0.927 106.6 48.6 -56.1 -47.4 5.7 3.3 1.8 42 42 A E H 3< S+ 0 0 127 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.2 0.648 110.4 57.2 -71.0 -10.6 7.8 3.9 -1.4 43 43 A M H << S+ 0 0 0 -4,-1.2 -36,-0.7 -3,-1.0 -2,-0.2 0.955 126.2 9.4 -83.8 -70.6 4.7 3.8 -3.5 44 44 A T H < S- 0 0 0 -4,-1.6 -2,-0.2 -38,-0.1 -3,-0.1 0.401 87.9-135.7 -91.1 5.0 2.4 6.5 -2.1 45 45 A E < - 0 0 101 -4,-1.2 -4,-0.1 -5,-0.5 -3,-0.1 0.791 37.4-174.4 47.7 22.3 5.1 8.0 0.2 46 46 A H - 0 0 18 -6,-0.4 4,-0.1 -5,-0.1 -1,-0.1 -0.128 29.4-127.7 -45.8 146.2 2.2 8.0 2.7 47 47 A P S S+ 0 0 101 0, 0.0 3,-0.2 0, 0.0 -1,-0.1 0.923 111.6 41.9 -69.1 -43.8 3.4 9.7 5.9 48 48 A S S > S+ 0 0 39 1,-0.2 3,-1.1 2,-0.1 2,-0.6 0.883 87.6 170.4 -69.8 -32.7 2.3 6.8 8.2 49 49 A G T > S+ 0 0 0 1,-0.3 3,-0.8 2,-0.1 4,-0.3 -0.424 74.6 15.0 61.5-110.1 3.7 4.5 5.5 50 50 A S T 3> S+ 0 0 29 -2,-0.6 4,-2.0 1,-0.2 -1,-0.3 0.443 118.9 75.2 -75.2 6.3 3.6 1.1 7.2 51 51 A D H <> S+ 0 0 42 -3,-1.1 4,-1.1 2,-0.2 -1,-0.2 0.868 74.0 75.7 -83.5 -36.9 1.2 2.6 9.8 52 52 A L H <4 S+ 0 0 22 -3,-0.8 -1,-0.2 1,-0.2 -2,-0.2 0.817 115.5 24.3 -44.3 -26.2 -1.7 2.6 7.3 53 53 A I H 4 S+ 0 0 7 -4,-0.3 -1,-0.2 -3,-0.2 -2,-0.2 0.772 131.4 41.5-106.1 -42.3 -1.6 -1.1 8.2 54 54 A Y H < S+ 0 0 118 -4,-2.0 -2,-0.2 1,-0.2 -3,-0.1 -0.049 113.0 60.5 -94.0 32.8 0.0 -1.0 11.6 55 55 A Y < + 0 0 161 -4,-1.1 2,-0.5 7,-0.1 -1,-0.2 -0.257 63.6 169.5-157.0 60.7 -2.0 2.1 12.6 56 56 A P - 0 0 55 0, 0.0 6,-0.1 0, 0.0 3,-0.1 -0.657 43.9-108.5 -79.8 118.6 -5.7 1.3 12.5 57 57 A K > - 0 0 160 -2,-0.5 2,-2.1 4,-0.3 3,-1.3 -0.004 40.6 -96.3 -41.6 151.5 -7.8 4.1 14.1 58 58 A E T 3 S+ 0 0 186 1,-0.3 -1,-0.2 -3,-0.1 3,-0.1 -0.497 118.6 15.8 -76.1 83.2 -9.2 3.1 17.5 59 59 A G T 3 S+ 0 0 83 -2,-2.1 -1,-0.3 1,-0.1 -2,-0.1 0.224 112.3 86.6 136.3 -10.1 -12.6 2.1 16.2 60 60 A D S < S- 0 0 101 -3,-1.3 2,-0.3 1,-0.1 -1,-0.1 0.168 80.8 -92.5 -93.8-144.1 -12.0 1.8 12.4 61 61 A D - 0 0 75 2,-0.1 -4,-0.3 1,-0.1 -1,-0.1 -0.984 9.8-153.0-137.7 149.5 -10.7 -1.2 10.5 62 62 A D + 0 0 82 -2,-0.3 5,-0.1 -6,-0.1 -1,-0.1 0.365 52.3 134.4-101.9 5.6 -7.2 -2.4 9.6 63 63 A S - 0 0 47 1,-0.1 4,-0.5 3,-0.1 -2,-0.1 0.015 67.5-115.6 -47.1 166.6 -8.4 -4.4 6.5 64 64 A P S > S+ 0 0 17 0, 0.0 4,-2.3 0, 0.0 3,-0.4 0.839 112.4 56.4 -77.5 -37.1 -6.4 -3.9 3.3 65 65 A S H > S+ 0 0 64 1,-0.2 4,-1.7 2,-0.2 5,-0.1 0.861 106.5 50.3 -65.6 -34.0 -9.3 -2.2 1.4 66 66 A G H 4 S+ 0 0 17 2,-0.2 4,-0.4 3,-0.2 -1,-0.2 0.711 112.5 47.6 -78.3 -16.7 -9.6 0.5 4.1 67 67 A I H > S+ 0 0 4 -4,-0.5 4,-2.1 -3,-0.4 -2,-0.2 0.841 116.2 41.5 -90.0 -36.5 -5.9 1.2 3.9 68 68 A V H X S+ 0 0 2 -4,-2.3 4,-2.3 2,-0.2 -2,-0.2 0.818 114.2 53.3 -79.3 -28.1 -5.7 1.3 0.1 69 69 A N H X S+ 0 0 92 -4,-1.7 4,-1.2 -5,-0.3 -1,-0.2 0.849 106.6 55.8 -71.9 -29.2 -9.0 3.3 0.2 70 70 A T H >> S+ 0 0 54 -4,-0.4 4,-2.4 2,-0.2 3,-0.6 0.972 109.2 42.5 -67.5 -53.0 -7.1 5.5 2.7 71 71 A V H 3X S+ 0 0 0 -4,-2.1 4,-2.2 1,-0.2 5,-0.5 0.959 103.8 67.2 -59.3 -47.0 -4.2 6.2 0.2 72 72 A K H 3< S+ 0 0 91 -4,-2.3 4,-0.3 1,-0.3 -1,-0.2 0.891 111.6 34.6 -39.9 -43.1 -6.7 6.7 -2.6 73 73 A Q H XX S+ 0 0 151 -4,-1.2 4,-1.9 -3,-0.6 3,-0.9 0.845 113.5 61.5 -82.5 -32.3 -7.8 9.8 -0.6 74 74 A W H >X>S+ 0 0 22 -4,-2.4 4,-2.7 1,-0.3 3,-0.8 0.992 96.5 56.9 -55.6 -64.8 -4.3 10.5 0.5 75 75 A R H 3<>S+ 0 0 16 -4,-2.2 5,-1.7 1,-0.3 -1,-0.3 0.754 107.4 53.0 -40.3 -23.3 -3.0 11.0 -3.0 76 76 A A H X45S+ 0 0 75 -3,-0.9 3,-0.6 -5,-0.5 -1,-0.3 0.936 112.2 40.6 -82.5 -44.6 -5.7 13.6 -3.3 77 77 A A H <<5S+ 0 0 87 -4,-1.9 -2,-0.2 -3,-0.8 -3,-0.1 0.963 122.9 41.1 -63.4 -49.0 -4.6 15.6 -0.2 78 78 A N T 3<5S- 0 0 64 -4,-2.7 -1,-0.3 -5,-0.2 -2,-0.2 0.464 104.7-138.2 -77.5 1.4 -1.0 15.1 -1.0 79 79 A G T < < + 0 0 58 -3,-0.6 -3,-0.2 -5,-0.5 -4,-0.1 0.898 49.2 156.8 42.1 42.6 -2.0 15.8 -4.6 80 80 A K < - 0 0 90 -5,-1.7 -36,-0.1 -6,-0.2 -35,-0.0 0.156 51.3 -89.3 -79.1-156.3 0.3 13.0 -5.5 81 81 A S - 0 0 93 1,-0.1 2,-0.3 -3,-0.0 -1,-0.1 0.843 50.8-136.2 -85.4 -93.0 -0.0 11.0 -8.8 82 82 A G - 0 0 15 -3,-0.0 -72,-0.2 -72,-0.0 -1,-0.1 -0.929 27.7 -54.7 155.7-178.5 -2.3 8.0 -8.6 83 83 A F - 0 0 34 -2,-0.3 -72,-0.3 1,-0.1 -75,-0.2 -0.095 63.4 -88.1 -77.8-176.4 -2.5 4.3 -9.6 84 84 A K - 0 0 120 -74,-0.9 2,-0.3 -77,-0.5 -75,-0.1 0.441 69.3 -54.1 -69.4-141.9 -2.2 3.1 -13.2 85 85 A Q 0 0 168 -77,-0.2 -1,-0.2 1,-0.1 -74,-0.1 -0.796 360.0 360.0-105.7 148.9 -5.3 2.8 -15.4 86 86 A G 0 0 115 -2,-0.3 -1,-0.1 -3,-0.1 -2,-0.0 0.336 360.0 360.0-123.2 360.0 -8.5 1.0 -14.6