==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN 29-NOV-06 2JMS . COMPND 2 MOLECULE: PHEROMONE EN-6; . SOURCE 2 ORGANISM_SCIENTIFIC: EUPLOTES NOBILII; . AUTHOR B.PEDRINI,W.J.PLACZEK,E.KOCULI,C.ALIMENTI,A.LATERZA, . 63 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4244.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 58.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 12.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 96 0, 0.0 46,-0.0 0, 0.0 5,-0.0 0.000 360.0 360.0 360.0 177.3 -6.7 -1.1 10.4 2 2 A D > - 0 0 103 1,-0.0 3,-0.6 48,-0.0 4,-0.1 -0.913 360.0-131.3-116.5 149.5 -8.3 0.7 7.3 3 3 A P G > S+ 0 0 22 0, 0.0 3,-0.6 0, 0.0 44,-0.1 0.539 95.7 81.7 -73.7 -7.2 -6.4 3.1 4.9 4 4 A E G 3 S+ 0 0 153 1,-0.2 14,-0.1 43,-0.1 15,-0.0 0.920 100.7 29.5 -64.7 -48.8 -9.2 5.7 5.3 5 5 A E G < S+ 0 0 171 -3,-0.6 2,-0.4 1,-0.1 -1,-0.2 0.127 114.8 74.4 -99.9 15.3 -7.9 7.2 8.6 6 6 A H < + 0 0 46 -3,-0.6 2,-0.3 -4,-0.1 -1,-0.1 -0.908 46.1 135.9-138.7 104.7 -4.2 6.4 7.8 7 7 A F + 0 0 65 -2,-0.4 36,-0.2 36,-0.1 35,-0.0 -0.964 4.9 152.8-134.1 140.2 -2.1 8.3 5.4 8 8 A D - 0 0 93 34,-1.6 2,-0.6 -2,-0.3 39,-0.0 -0.440 23.7-167.8-157.8 81.3 1.5 9.4 6.1 9 9 A P - 0 0 61 0, 0.0 33,-0.2 0, 0.0 32,-0.1 -0.678 9.1-147.9 -76.2 119.3 3.4 9.7 2.8 10 10 A N > - 0 0 73 31,-2.1 3,-2.3 -2,-0.6 2,-1.4 -0.263 45.7 -77.3 -69.9 172.3 7.2 10.0 3.1 11 11 A T T 3 S+ 0 0 150 1,-0.3 -1,-0.1 -2,-0.0 31,-0.1 0.012 128.3 56.9 -68.1 28.6 9.1 12.1 0.4 12 12 A N T 3 S+ 0 0 125 -2,-1.4 -1,-0.3 29,-0.3 30,-0.1 0.339 80.9 100.3-134.0 -5.1 8.9 9.2 -2.2 13 13 A C < + 0 0 30 -3,-2.3 3,-0.1 28,-0.4 29,-0.1 -0.318 42.9 179.0 -67.6 169.0 5.1 8.7 -2.3 14 14 A D + 0 0 135 1,-0.2 2,-0.2 -2,-0.0 -1,-0.1 0.522 52.2 76.9-138.9 -60.0 3.2 10.3 -5.3 15 15 A Y - 0 0 80 1,-0.1 -1,-0.2 2,-0.1 -2,-0.0 -0.411 51.5-165.5 -65.6 138.4 -0.5 9.5 -5.2 16 16 A T + 0 0 115 -2,-0.2 2,-0.4 -3,-0.1 -1,-0.1 -0.445 60.7 97.5-120.0 52.6 -2.7 11.5 -2.7 17 17 A N > - 0 0 79 1,-0.1 4,-1.7 2,-0.0 5,-0.3 -0.982 66.8-144.9-130.0 136.6 -5.7 9.1 -2.9 18 18 A S H > S+ 0 0 53 -2,-0.4 4,-2.7 3,-0.2 5,-0.2 0.961 100.3 46.0 -59.3 -53.1 -6.2 6.4 -0.3 19 19 A Q H > S+ 0 0 118 2,-0.2 4,-3.3 1,-0.2 5,-0.2 0.929 114.5 42.4 -59.7 -59.8 -7.6 4.0 -3.0 20 20 A D H > S+ 0 0 63 2,-0.2 4,-2.4 1,-0.2 5,-0.3 0.936 117.9 46.2 -60.1 -50.2 -5.1 4.4 -5.8 21 21 A A H X S+ 0 0 2 -4,-1.7 4,-2.8 1,-0.2 -2,-0.2 0.965 117.5 44.2 -53.0 -54.9 -2.0 4.4 -3.5 22 22 A W H X S+ 0 0 38 -4,-2.7 4,-2.4 -5,-0.3 6,-0.3 0.911 111.6 54.0 -54.6 -49.5 -3.5 1.3 -1.6 23 23 A D H <>S+ 0 0 15 -4,-3.3 5,-2.2 1,-0.2 6,-0.6 0.948 113.6 40.5 -55.8 -54.0 -4.5 -0.5 -4.9 24 24 A Y H ><5S+ 0 0 64 -4,-2.4 3,-1.9 1,-0.2 -1,-0.2 0.941 115.0 52.5 -62.2 -46.8 -1.0 -0.2 -6.4 25 25 A C H 3<5S+ 0 0 0 -4,-2.8 10,-1.7 -5,-0.3 -1,-0.2 0.853 110.7 49.1 -52.1 -38.1 0.6 -1.1 -3.0 26 26 A T T 3<5S- 0 0 1 -4,-2.4 -1,-0.3 -5,-0.2 34,-0.2 0.120 116.5-114.0 -96.9 17.3 -1.6 -4.2 -2.8 27 27 A N T < 5S+ 0 0 33 -3,-1.9 -3,-0.2 2,-0.2 3,-0.2 0.591 80.1 129.6 58.4 16.1 -0.7 -5.3 -6.4 28 28 A Y S > S- 0 0 2 -10,-1.7 4,-1.4 1,-0.2 3,-0.7 -0.552 101.4 -41.1 99.5-175.1 5.0 -4.9 -1.4 36 36 A E H 3> S+ 0 0 72 27,-2.5 4,-2.9 1,-0.2 -1,-0.2 0.819 132.5 63.3 -59.2 -31.2 5.6 -3.7 2.2 37 37 A I H 3> S+ 0 0 113 26,-0.5 4,-2.2 -3,-0.2 -1,-0.2 0.907 100.9 49.7 -55.2 -50.4 7.8 -0.9 0.9 38 38 A C H <> S+ 0 0 19 -3,-0.7 4,-1.9 -5,-0.3 5,-0.2 0.907 112.5 48.3 -64.9 -40.6 4.9 0.8 -1.0 39 39 A C H X S+ 0 0 0 -4,-1.4 4,-2.3 -14,-0.2 3,-0.4 0.976 113.4 47.9 -53.2 -58.3 2.8 0.5 2.1 40 40 A N H < S+ 0 0 81 -4,-2.9 -2,-0.2 1,-0.2 -30,-0.2 0.768 112.6 48.6 -55.5 -36.6 5.7 2.1 4.2 41 41 A D H < S+ 0 0 38 -4,-2.2 -31,-2.1 1,-0.2 -28,-0.4 0.828 122.5 30.5 -80.5 -33.6 6.3 4.9 1.7 42 42 A C H < S+ 0 0 10 -4,-1.9 -34,-1.6 -3,-0.4 2,-0.3 0.605 127.0 32.2 -96.0 -16.8 2.6 6.0 1.4 43 43 A F S < S- 0 0 1 -4,-2.3 -1,-0.1 -36,-0.2 -33,-0.1 -0.970 79.4-108.0-140.8 151.2 1.5 5.1 4.9 44 44 A D > - 0 0 81 -2,-0.3 4,-2.5 1,-0.1 -36,-0.1 -0.136 53.2 -88.8 -62.7 178.6 2.7 4.8 8.5 45 45 A E H > S+ 0 0 162 2,-0.2 4,-2.5 1,-0.2 -1,-0.1 0.835 124.7 55.1 -60.1 -40.8 3.3 1.3 10.1 46 46 A T H > S+ 0 0 85 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.948 113.0 39.2 -67.3 -51.2 -0.3 1.0 11.4 47 47 A G H >> S+ 0 0 0 1,-0.2 4,-1.7 2,-0.2 3,-1.2 0.960 115.0 58.4 -55.8 -51.0 -2.0 1.6 8.0 48 48 A T H 3X S+ 0 0 5 -4,-2.5 4,-3.5 1,-0.2 -2,-0.2 0.851 92.0 65.7 -46.0 -48.4 0.8 -0.5 6.5 49 49 A G H 3X S+ 0 0 44 -4,-2.5 4,-1.3 1,-0.2 -1,-0.2 0.844 109.7 38.9 -53.0 -36.7 -0.0 -3.6 8.7 50 50 A A H X S+ 0 0 65 -4,-3.5 4,-3.4 1,-0.2 3,-1.9 0.944 102.1 50.8 -57.9 -51.8 0.7 -5.5 3.9 53 53 A A H 3X S+ 0 0 54 -4,-1.3 4,-2.0 1,-0.3 -1,-0.2 0.891 108.6 54.2 -53.6 -40.4 -1.8 -8.3 4.3 54 54 A Q H 3< S+ 0 0 71 -4,-1.6 5,-0.4 2,-0.2 6,-0.3 0.575 119.9 31.2 -74.5 -6.9 -3.4 -7.1 1.0 55 55 A A H X< S+ 0 0 0 -3,-1.9 3,-0.6 -4,-0.7 4,-0.4 0.772 119.7 52.6-104.0 -44.6 0.0 -7.3 -0.8 56 56 A F H 3< S+ 0 0 106 -4,-3.4 -3,-0.2 1,-0.2 -2,-0.2 0.842 131.3 5.8 -53.6 -55.4 1.5 -10.3 1.1 57 57 A G T 3< S+ 0 0 63 -4,-2.0 -1,-0.2 -5,-0.3 -2,-0.1 -0.500 123.7 57.6-145.0 58.5 -1.4 -12.8 0.7 58 58 A N S < S- 0 0 79 -3,-0.6 -3,-0.1 2,-0.4 -4,-0.1 0.227 123.1 -20.0-144.7 -58.9 -4.0 -11.3 -1.6 59 59 A S S S+ 0 0 55 -5,-0.4 -32,-0.2 -4,-0.4 -4,-0.1 0.624 111.3 72.4-123.8 -62.8 -2.3 -10.5 -5.0 60 60 A C - 0 0 25 -5,-0.3 -2,-0.4 -6,-0.3 -1,-0.1 -0.255 69.2-137.3 -64.8 147.6 1.5 -10.1 -4.9 61 61 A L S S+ 0 0 151 1,-0.2 2,-0.4 -4,-0.1 -1,-0.1 0.919 90.1 16.6 -69.7 -40.6 3.5 -13.4 -4.5 62 62 A N 0 0 124 1,-0.1 -1,-0.2 -5,-0.0 -5,-0.1 -0.988 360.0 360.0-132.1 136.7 5.9 -11.7 -2.0 63 63 A W 0 0 102 -2,-0.4 -27,-2.5 -28,-0.1 -26,-0.5 0.523 360.0 360.0 -74.3 360.0 5.6 -8.5 -0.0