==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LUMINESCENT PROTEIN 26-JUL-01 1JO5 . COMPND 2 MOLECULE: LIGHT-HARVESTING PROTEIN B-875; . SOURCE 2 ORGANISM_SCIENTIFIC: RHODOBACTER SPHAEROIDES; . AUTHOR P.L.SORGEN,S.M.CAHILL,R.D.KRUEGER-KOPLIN,S.T.KRUEGER-KOPLIN, . 48 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5027.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 77.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 18.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 28 58.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 133 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -66.9 -32.2 5.6 2.2 2 2 A D + 0 0 161 1,-0.2 0, 0.0 2,-0.1 0, 0.0 -0.507 360.0 169.0 -69.7 125.5 -28.7 7.0 3.0 3 3 A K - 0 0 132 -2,-0.3 -1,-0.2 0, 0.0 0, 0.0 0.730 17.6-164.3-105.3 -34.1 -26.0 4.5 2.0 4 4 A S > + 0 0 103 1,-0.1 3,-1.0 2,-0.1 4,-0.1 0.726 46.2 132.4 53.3 23.2 -22.9 6.7 2.4 5 5 A D G > + 0 0 91 1,-0.2 3,-1.4 2,-0.1 4,-0.4 0.508 46.9 86.1 -80.5 -3.6 -21.1 4.1 0.3 6 6 A L G 3> + 0 0 118 1,-0.3 4,-2.1 2,-0.2 3,-0.4 0.610 69.8 79.0 -71.3 -10.8 -19.7 6.9 -1.8 7 7 A G G <4 S+ 0 0 46 -3,-1.0 -1,-0.3 1,-0.2 -2,-0.1 0.711 82.5 64.1 -70.0 -19.4 -16.9 7.2 0.8 8 8 A Y T X4 S+ 0 0 181 -3,-1.4 3,-0.5 1,-0.1 -1,-0.2 0.872 109.6 36.6 -71.1 -38.4 -15.2 4.2 -0.8 9 9 A T G >4 S+ 0 0 107 -3,-0.4 3,-0.6 -4,-0.4 2,-0.4 0.896 109.4 61.4 -80.4 -44.2 -14.6 6.0 -4.1 10 10 A G G 3< S+ 0 0 44 -4,-2.1 4,-0.5 1,-0.2 3,-0.3 0.110 73.0 104.2 -72.0 26.2 -13.9 9.4 -2.6 11 11 A L G <> + 0 0 73 -3,-0.5 4,-1.9 -2,-0.4 -1,-0.2 0.277 52.7 91.5 -90.1 11.2 -10.9 8.0 -0.8 12 12 A T H <> S+ 0 0 89 -3,-0.6 4,-3.1 2,-0.2 5,-0.2 0.957 85.9 44.9 -69.7 -52.0 -8.5 9.6 -3.3 13 13 A D H > S+ 0 0 107 -3,-0.3 4,-2.4 1,-0.2 5,-0.2 0.914 118.3 45.2 -58.6 -42.0 -7.9 12.8 -1.4 14 14 A E H > S+ 0 0 130 -4,-0.5 4,-2.9 1,-0.2 -1,-0.2 0.871 111.7 53.9 -67.5 -37.0 -7.5 10.8 1.8 15 15 A Q H X S+ 0 0 107 -4,-1.9 4,-2.6 2,-0.2 5,-0.2 0.930 111.1 44.5 -62.3 -48.2 -5.3 8.4 -0.1 16 16 A A H X S+ 0 0 53 -4,-3.1 4,-2.6 2,-0.2 -2,-0.2 0.962 119.2 40.8 -61.2 -54.9 -3.0 11.2 -1.3 17 17 A Q H X S+ 0 0 118 -4,-2.4 4,-2.7 -5,-0.2 5,-0.3 0.875 115.3 52.9 -61.8 -40.3 -2.8 13.0 2.0 18 18 A E H X S+ 0 0 113 -4,-2.9 4,-2.1 -5,-0.2 5,-0.2 0.927 113.9 41.0 -62.8 -47.4 -2.5 9.7 3.9 19 19 A L H X S+ 0 0 104 -4,-2.6 4,-2.8 -5,-0.2 -2,-0.2 0.882 116.0 50.9 -69.0 -39.7 0.4 8.4 1.8 20 20 A H H X S+ 0 0 101 -4,-2.6 4,-2.3 -5,-0.2 5,-0.3 0.960 114.7 41.3 -62.5 -53.6 2.1 11.8 1.8 21 21 A S H X S+ 0 0 60 -4,-2.7 4,-3.6 1,-0.2 5,-0.2 0.905 119.5 45.1 -62.4 -43.6 1.9 12.3 5.6 22 22 A V H X S+ 0 0 41 -4,-2.1 4,-2.9 -5,-0.3 7,-0.2 0.885 109.7 55.6 -69.2 -38.4 2.9 8.7 6.3 23 23 A Y H < S+ 0 0 123 -4,-2.8 6,-0.3 2,-0.2 -2,-0.2 0.953 118.8 33.2 -59.2 -48.0 5.6 8.8 3.7 24 24 A M H >< S+ 0 0 124 -4,-2.3 3,-1.2 2,-0.2 -2,-0.2 0.939 118.5 52.3 -71.7 -46.8 7.2 11.8 5.4 25 25 A S H 3< S+ 0 0 99 -4,-3.6 -2,-0.2 1,-0.3 -1,-0.2 0.850 131.0 20.3 -55.8 -34.3 6.1 10.7 8.9 26 26 A G T >< + 0 0 10 -4,-2.9 3,-3.4 -5,-0.2 4,-0.3 -0.403 69.2 158.7-135.6 60.1 7.8 7.4 8.0 27 27 A L T X S+ 0 0 103 -3,-1.2 3,-1.0 1,-0.3 4,-0.2 0.811 81.4 58.5 -51.1 -31.7 10.2 8.0 5.2 28 28 A W T >> S+ 0 0 207 1,-0.2 3,-1.2 -4,-0.2 4,-0.7 0.509 79.2 91.7 -77.1 -4.0 11.9 4.8 6.3 29 29 A L H <> S+ 0 0 76 -3,-3.4 4,-2.2 -6,-0.3 3,-0.4 0.781 72.1 70.7 -60.8 -26.2 8.6 3.0 5.7 30 30 A F H <> S+ 0 0 132 -3,-1.0 4,-2.9 -4,-0.3 -1,-0.3 0.868 89.7 60.5 -58.6 -37.7 9.9 2.3 2.1 31 31 A S H <> S+ 0 0 77 -3,-1.2 4,-2.2 2,-0.2 -1,-0.2 0.894 107.1 44.4 -58.1 -40.7 12.4 -0.2 3.6 32 32 A A H X S+ 0 0 52 -4,-0.7 4,-2.8 -3,-0.4 -1,-0.2 0.921 112.5 52.7 -68.2 -42.6 9.6 -2.3 5.0 33 33 A V H X S+ 0 0 67 -4,-2.2 4,-2.4 1,-0.2 -2,-0.2 0.862 108.4 51.0 -58.7 -39.5 7.8 -1.9 1.7 34 34 A A H X S+ 0 0 46 -4,-2.9 4,-3.3 2,-0.2 5,-0.2 0.930 109.9 48.5 -66.1 -46.8 10.9 -3.2 -0.0 35 35 A I H X S+ 0 0 92 -4,-2.2 4,-3.3 2,-0.2 5,-0.3 0.935 112.2 49.0 -59.5 -47.8 11.2 -6.2 2.2 36 36 A V H X S+ 0 0 97 -4,-2.8 4,-2.9 2,-0.2 -2,-0.2 0.944 115.5 43.3 -57.2 -50.9 7.5 -7.1 1.7 37 37 A A H X S+ 0 0 54 -4,-2.4 4,-2.5 2,-0.2 -2,-0.2 0.937 116.5 47.0 -61.1 -49.1 7.8 -6.7 -2.1 38 38 A H H X S+ 0 0 138 -4,-3.3 4,-2.1 1,-0.2 -2,-0.2 0.949 117.1 42.4 -58.6 -51.4 11.1 -8.6 -2.3 39 39 A L H X S+ 0 0 85 -4,-3.3 4,-1.7 -5,-0.2 -1,-0.2 0.889 110.8 58.0 -63.0 -39.2 9.9 -11.4 -0.0 40 40 A A H X S+ 0 0 48 -4,-2.9 4,-1.3 -5,-0.3 3,-0.3 0.929 107.6 45.9 -56.7 -47.1 6.5 -11.4 -1.8 41 41 A V H X S+ 0 0 64 -4,-2.5 4,-2.5 1,-0.3 3,-0.4 0.912 107.4 57.2 -63.2 -40.8 8.3 -12.1 -5.1 42 42 A Y H < S+ 0 0 161 -4,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.834 109.6 47.0 -57.8 -30.5 10.4 -14.8 -3.5 43 43 A I H < S+ 0 0 109 -4,-1.7 -1,-0.3 -3,-0.3 -2,-0.2 0.734 110.3 52.6 -81.3 -25.5 7.0 -16.3 -2.6 44 44 A W H >X S+ 0 0 179 -4,-1.3 4,-2.6 -3,-0.4 3,-1.1 0.802 95.5 68.5 -79.9 -31.9 5.7 -15.8 -6.2 45 45 A R T 3< S+ 0 0 185 -4,-2.5 -2,-0.2 1,-0.3 -1,-0.2 0.930 104.7 41.1 -53.4 -50.9 8.7 -17.6 -7.8 46 46 A P T 34 S+ 0 0 90 0, 0.0 -1,-0.3 0, 0.0 -2,-0.2 0.502 114.9 55.8 -76.6 -3.4 7.7 -21.0 -6.4 47 47 A W T <4 0 0 188 -3,-1.1 -2,-0.2 -4,-0.1 -3,-0.1 0.827 360.0 360.0 -93.8 -41.0 4.1 -20.2 -7.2 48 48 A F < 0 0 209 -4,-2.6 -3,-0.1 -3,-0.0 -4,-0.1 0.587 360.0 360.0 45.6 360.0 4.5 -19.5 -10.9