==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN, MEMBRANE PROTEIN 19-NOV-07 2JXF . COMPND 2 MOLECULE: GENOME POLYPROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.MONTSERRET,F.PENIN . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3409.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 76.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Q 0 0 184 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 157.4 -21.9 1.2 0.6 2 2 A T >> + 0 0 92 0, 0.0 3,-1.0 0, 0.0 4,-1.0 -0.302 360.0 1.8-154.2-119.6 -20.2 0.2 -2.7 3 3 A N H 3> S+ 0 0 92 1,-0.2 4,-2.1 2,-0.2 0, 0.0 0.708 118.2 75.1 -57.0 -20.5 -16.8 1.1 -4.2 4 4 A W H 3> S+ 0 0 168 2,-0.2 4,-1.4 1,-0.2 -1,-0.2 0.944 94.3 48.1 -59.3 -49.7 -16.1 3.2 -0.9 5 5 A Q H <> S+ 0 0 103 -3,-1.0 4,-1.5 1,-0.2 3,-0.3 0.916 112.6 50.1 -58.8 -41.0 -15.5 -0.0 1.1 6 6 A K H X S+ 0 0 153 -4,-1.0 4,-3.5 1,-0.2 -1,-0.2 0.852 101.2 63.7 -66.9 -32.6 -13.1 -1.2 -1.7 7 7 A L H X S+ 0 0 76 -4,-2.1 4,-2.9 2,-0.2 -1,-0.2 0.883 104.1 46.5 -60.5 -37.9 -11.3 2.2 -1.6 8 8 A E H X S+ 0 0 142 -4,-1.4 4,-2.2 -3,-0.3 5,-0.2 0.924 114.6 46.1 -71.5 -40.7 -10.1 1.5 2.0 9 9 A V H X S+ 0 0 104 -4,-1.5 4,-2.0 1,-0.2 -2,-0.2 0.943 115.7 47.7 -63.5 -44.0 -9.1 -2.1 1.0 10 10 A F H X S+ 0 0 107 -4,-3.5 4,-2.6 1,-0.2 5,-0.3 0.923 108.4 56.6 -59.7 -46.8 -7.4 -0.5 -2.1 11 11 A W H X S+ 0 0 160 -4,-2.9 4,-3.0 1,-0.2 -2,-0.2 0.924 109.2 42.6 -53.2 -54.5 -5.8 2.2 0.2 12 12 A A H X S+ 0 0 58 -4,-2.2 4,-3.2 2,-0.2 5,-0.3 0.896 112.5 54.4 -64.1 -39.5 -4.0 -0.3 2.5 13 13 A K H X S+ 0 0 152 -4,-2.0 4,-1.8 -5,-0.2 -2,-0.2 0.951 115.5 39.1 -58.8 -48.9 -2.9 -2.5 -0.5 14 14 A H H X S+ 0 0 118 -4,-2.6 4,-1.8 2,-0.2 -2,-0.2 0.933 116.5 51.6 -66.4 -46.1 -1.3 0.6 -2.2 15 15 A M H X S+ 0 0 98 -4,-3.0 4,-1.8 -5,-0.3 -2,-0.2 0.898 110.5 48.4 -59.2 -41.9 0.1 1.9 1.2 16 16 A W H X S+ 0 0 184 -4,-3.2 4,-3.2 1,-0.2 -1,-0.2 0.878 107.3 56.1 -68.5 -34.7 1.6 -1.6 2.0 17 17 A N H X S+ 0 0 106 -4,-1.8 4,-2.1 -5,-0.3 -1,-0.2 0.878 105.3 52.5 -64.2 -34.4 3.2 -1.6 -1.5 18 18 A F H X S+ 0 0 136 -4,-1.8 4,-1.7 2,-0.2 -1,-0.2 0.941 113.9 43.0 -64.5 -45.6 4.8 1.8 -0.6 19 19 A I H X S+ 0 0 66 -4,-1.8 4,-2.4 2,-0.2 -2,-0.2 0.887 111.8 53.3 -69.0 -39.7 6.2 0.2 2.6 20 20 A S H X S+ 0 0 55 -4,-3.2 4,-2.7 2,-0.2 -2,-0.2 0.898 108.2 50.9 -65.2 -37.8 7.3 -3.1 0.8 21 21 A G H X S+ 0 0 27 -4,-2.1 4,-3.2 2,-0.2 5,-0.2 0.943 112.3 46.0 -63.9 -47.0 9.3 -1.0 -1.9 22 22 A I H X S+ 0 0 92 -4,-1.7 4,-2.6 2,-0.2 -2,-0.2 0.916 114.7 48.2 -62.2 -42.9 11.1 0.9 0.9 23 23 A Q H X S+ 0 0 143 -4,-2.4 4,-1.4 2,-0.2 -2,-0.2 0.920 114.1 46.7 -63.6 -42.8 11.8 -2.4 2.8 24 24 A Y H X S+ 0 0 152 -4,-2.7 4,-1.5 1,-0.2 3,-0.2 0.949 116.4 43.4 -64.1 -50.5 13.0 -4.1 -0.5 25 25 A L H < S+ 0 0 93 -4,-3.2 -2,-0.2 1,-0.2 -1,-0.2 0.848 104.7 65.1 -66.3 -34.3 15.3 -1.1 -1.3 26 26 A A H < S+ 0 0 68 -4,-2.6 3,-0.5 -5,-0.2 -1,-0.2 0.920 113.0 33.4 -55.5 -44.7 16.5 -0.8 2.3 27 27 A G H < S+ 0 0 77 -4,-1.4 -1,-0.2 -3,-0.2 -2,-0.2 0.722 127.5 42.5 -83.6 -22.3 18.2 -4.2 1.9 28 28 A L S < S+ 0 0 109 -4,-1.5 -1,-0.2 -5,-0.2 -2,-0.2 -0.438 87.7 127.9-120.4 57.3 19.0 -3.6 -1.8 29 29 A S 0 0 84 -3,-0.5 -3,-0.1 1,-0.1 -4,-0.0 -0.356 360.0 360.0-101.5-174.9 20.2 0.0 -1.8 30 30 A T 0 0 210 -2,-0.1 -1,-0.1 0, 0.0 -5,-0.0 0.677 360.0 360.0-125.4 360.0 23.4 1.7 -3.2