==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 10-AUG-08 2K7G . COMPND 2 MOLECULE: VARV PEPTIDE F; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA ARVENSIS; . AUTHOR C.K.WANG . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2100.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 72.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 34.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 20.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 53 0, 0.0 28,-0.3 0, 0.0 27,-0.1 0.000 360.0 360.0 360.0 -30.7 1.9 8.9 0.2 2 2 A V E -A 28 0A 80 26,-2.0 26,-2.7 25,-0.1 2,-1.7 -0.641 360.0-139.9 -80.4 124.2 3.0 8.2 -3.3 3 3 A P E + 0 0 79 0, 0.0 3,-0.3 0, 0.0 24,-0.1 -0.246 61.4 126.2 -79.7 52.7 1.2 5.2 -4.9 4 4 A I E + 0 0 114 -2,-1.7 23,-0.1 24,-0.2 -2,-0.0 0.339 60.8 72.0 -90.0 8.1 4.2 3.7 -6.5 5 5 A a E S- 0 0 23 21,-0.5 -1,-0.2 -3,-0.3 22,-0.1 0.822 83.5-152.4 -88.8 -36.0 3.5 0.4 -4.8 6 6 A G E + 0 0 72 20,-0.5 2,-0.4 -3,-0.3 21,-0.1 0.790 47.1 133.9 67.6 29.6 0.5 -0.4 -7.0 7 7 A E E -A 26 0A 30 19,-0.6 19,-3.4 9,-0.1 2,-0.5 -0.881 55.1-127.3-113.4 144.8 -1.1 -2.5 -4.2 8 8 A T E > -A 25 0A 92 -2,-0.4 3,-0.6 17,-0.3 5,-0.4 -0.765 6.1-158.1 -91.2 129.2 -4.7 -2.5 -3.0 9 9 A b G > + 0 0 4 15,-0.9 3,-1.3 -2,-0.5 16,-0.3 0.144 64.2 112.9 -89.8 20.4 -5.1 -2.0 0.7 10 10 A T G 3 S+ 0 0 79 14,-0.7 -1,-0.2 1,-0.3 15,-0.1 0.878 84.2 37.9 -58.9 -39.2 -8.6 -3.5 0.4 11 11 A L G < S- 0 0 158 -3,-0.6 -1,-0.3 2,-0.2 -2,-0.1 0.315 117.9-114.3 -94.3 6.8 -7.4 -6.5 2.4 12 12 A G S < S+ 0 0 45 -3,-1.3 2,-0.3 1,-0.2 -3,-0.1 0.917 80.3 107.7 61.6 46.0 -5.4 -4.3 4.7 13 13 A T - 0 0 82 -5,-0.4 2,-0.4 7,-0.1 -2,-0.2 -0.951 44.8-169.9-156.7 134.0 -2.0 -5.7 3.6 14 14 A c - 0 0 33 -2,-0.3 4,-0.1 5,-0.1 7,-0.1 -0.978 11.5-163.3-126.4 136.8 0.9 -4.5 1.5 15 15 A Y S S+ 0 0 205 -2,-0.4 2,-1.0 2,-0.1 -1,-0.1 0.738 71.4 89.5 -88.3 -27.2 3.8 -6.7 0.3 16 16 A T S > S- 0 0 57 1,-0.1 3,-2.4 2,-0.0 2,-0.1 -0.618 82.2-132.4 -77.2 103.2 6.0 -3.7 -0.6 17 17 A A T 3 S+ 0 0 85 -2,-1.0 3,-0.1 1,-0.3 -2,-0.1 -0.340 92.4 31.8 -57.3 122.9 7.9 -3.0 2.6 18 18 A G T 3 S+ 0 0 46 1,-0.4 11,-0.5 -2,-0.1 2,-0.4 0.149 90.5 116.8 112.9 -17.2 7.8 0.7 3.3 19 19 A a E < -B 28 0A 18 -3,-2.4 -1,-0.4 9,-0.2 9,-0.3 -0.689 60.4-133.3 -87.9 136.0 4.4 1.2 1.7 20 20 A S E -B 27 0A 64 7,-3.1 7,-2.6 -2,-0.4 2,-1.6 -0.641 16.1-122.4 -88.3 143.6 1.6 2.5 4.0 21 21 A b E +B 26 0A 56 -2,-0.3 2,-1.5 5,-0.2 5,-0.2 -0.620 35.9 174.4 -87.6 81.5 -1.8 0.8 3.8 22 22 A S E > -B 25 0A 58 -2,-1.6 3,-2.8 3,-1.6 -13,-0.2 -0.636 49.6 -92.8 -90.0 76.5 -4.0 3.8 3.0 23 23 A W T 3 S+ 0 0 196 -2,-1.5 -13,-0.1 1,-0.4 -15,-0.0 0.033 109.8 12.7 -34.9 127.1 -7.2 1.9 2.5 24 24 A P T 3 S+ 0 0 61 0, 0.0 -15,-0.9 0, 0.0 -14,-0.7 -0.824 131.9 44.3-100.0 35.7 -8.0 1.0 -0.1 25 25 A V E < -AB 8 22A 59 -3,-2.8 -3,-1.6 -17,-0.3 2,-0.7 -0.994 68.4-129.3-137.9 141.1 -4.6 1.6 -1.6 26 26 A c E -AB 7 21A 0 -19,-3.4 -19,-0.6 -2,-0.4 -21,-0.5 -0.766 33.7-179.1 -88.5 116.2 -1.0 1.0 -0.5 27 27 A T E - B 0 20A 18 -7,-2.6 -7,-3.1 -2,-0.7 2,-0.7 -0.967 25.1-136.5-122.0 132.6 1.0 4.2 -0.8 28 28 A R E AB 2 19A 93 -26,-2.7 -26,-2.0 -2,-0.4 -24,-0.2 -0.773 360.0 360.0 -89.1 112.9 4.7 4.6 -0.1 29 29 A N 0 0 140 -2,-0.7 -1,-0.3 -11,-0.5 -10,-0.1 0.815 360.0 360.0 55.8 360.0 5.2 7.9 1.8