==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CYTOTOXIN 22-JUL-96 1KBS . COMPND 2 MOLECULE: CTX IV; . SOURCE 2 ORGANISM_SCIENTIFIC: NAJA ATRA; . AUTHOR J.Y.JENG,T.K.S.KUMAR,G.JAYARAMAN,C.YU . 60 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4597.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 45.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 21.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 165 0, 0.0 13,-0.4 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0-139.9 -11.7 -5.4 5.8 2 2 A K - 0 0 101 55,-0.5 2,-0.7 11,-0.2 57,-0.4 -0.778 360.0 -87.5-157.9 177.2 -10.4 -3.3 3.0 3 3 A a B -A 12 0A 0 9,-1.6 9,-2.5 -2,-0.2 55,-0.2 -0.797 26.1-173.9-116.0 92.1 -8.2 -0.3 2.3 4 4 A N S S+ 0 0 82 53,-0.8 2,-0.3 -2,-0.7 54,-0.1 0.291 76.5 44.0 -74.3 14.9 -10.1 2.9 2.6 5 5 A K + 0 0 109 53,-0.3 6,-0.3 7,-0.2 7,-0.2 -0.959 47.2 152.0-146.2 151.1 -7.0 4.7 1.3 6 6 A L S S- 0 0 19 4,-1.2 28,-0.3 1,-0.7 29,-0.2 0.282 79.5 -5.8-135.0 -60.3 -4.5 4.0 -1.5 7 7 A V S S- 0 0 26 26,-0.1 -1,-0.7 3,-0.1 28,-0.1 -0.045 111.4 -53.1-121.1-148.2 -3.1 7.2 -2.6 8 8 A P S S+ 0 0 98 0, 0.0 27,-0.0 0, 0.0 0, 0.0 0.897 133.9 1.6 -66.7 -36.1 -4.2 10.8 -1.4 9 9 A L S S+ 0 0 136 -4,-0.0 2,-0.2 2,-0.0 -4,-0.0 0.241 103.4 109.3-137.5 1.7 -7.9 10.3 -2.2 10 10 A F + 0 0 106 2,-0.0 -4,-1.2 25,-0.0 2,-0.3 -0.604 39.2 179.9 -95.1 153.0 -8.3 6.7 -3.5 11 11 A Y + 0 0 165 -6,-0.3 2,-0.3 -2,-0.2 -7,-0.3 -0.943 4.2 170.3-151.8 147.4 -10.0 4.0 -1.5 12 12 A K B -A 3 0A 133 -9,-2.5 -9,-1.6 -2,-0.3 2,-0.3 -0.978 24.8-125.9-155.1 168.3 -10.7 0.3 -2.2 13 13 A T - 0 0 101 -2,-0.3 -11,-0.2 -11,-0.2 25,-0.1 -0.732 17.6-142.2-110.7 159.1 -11.8 -2.9 -1.0 14 14 A b - 0 0 22 -13,-0.4 7,-0.0 -2,-0.3 45,-0.0 -0.714 15.3-128.3-110.5 162.5 -10.1 -6.2 -1.1 15 15 A P - 0 0 101 0, 0.0 -1,-0.3 0, 0.0 3,-0.0 0.380 43.0 -85.1 -80.4-133.6 -11.8 -9.6 -1.6 16 16 A A S S+ 0 0 104 1,-0.1 3,-0.0 -2,-0.0 -2,-0.0 -0.001 109.8 79.3-136.7 19.4 -11.2 -12.6 0.8 17 17 A G S S+ 0 0 52 2,-0.0 2,-0.4 0, 0.0 -1,-0.1 0.196 89.4 69.2-109.8 3.6 -8.0 -14.1 -0.6 18 18 A K - 0 0 110 1,-0.2 22,-0.2 -3,-0.0 -4,-0.1 -0.978 56.2-164.0-133.9 152.9 -5.9 -11.4 1.1 19 19 A N + 0 0 88 20,-1.5 21,-0.2 -2,-0.4 -1,-0.2 0.921 69.1 6.6 -95.1 -76.7 -5.0 -10.5 4.5 20 20 A L E -B 39 0B 31 19,-0.6 19,-1.4 40,-0.1 2,-0.3 -0.008 59.0-132.3-107.8-155.5 -3.6 -6.9 4.6 21 21 A a E -BC 38 54B 1 33,-1.5 33,-1.3 17,-0.3 2,-0.4 -0.945 19.0-170.8-153.7 149.2 -3.1 -3.8 2.2 22 22 A Y E -BC 37 53B 35 15,-2.1 15,-1.8 -2,-0.3 2,-0.6 -0.995 23.7-126.5-146.2 144.0 0.0 -1.8 1.8 23 23 A K E - C 0 52B 52 29,-1.6 29,-2.0 -2,-0.4 2,-0.7 -0.869 21.8-146.4 -92.1 123.1 0.7 1.4 0.0 24 24 A M E + C 0 51B 42 -2,-0.6 11,-1.8 27,-0.2 27,-0.2 -0.853 33.3 161.0 -87.9 116.8 3.6 0.9 -2.4 25 25 A F E - C 0 50B 16 25,-2.1 25,-1.2 -2,-0.7 2,-0.3 -0.537 28.9-122.4-121.1-170.3 5.5 4.3 -2.5 26 26 A M E - C 0 49B 83 6,-0.3 23,-0.2 23,-0.3 22,-0.1 -0.848 4.7-150.8-138.9 163.5 9.0 5.4 -3.6 27 27 A V S S+ 0 0 81 21,-0.8 22,-0.1 -2,-0.3 21,-0.1 0.450 89.7 60.9-116.1 -10.3 12.1 7.1 -2.0 28 28 A S S S+ 0 0 100 20,-0.3 2,-0.1 2,-0.0 -1,-0.1 0.389 95.0 88.5 -95.8 -0.7 13.7 8.9 -5.0 29 29 A N S S- 0 0 89 2,-0.1 0, 0.0 1,-0.0 0, 0.0 -0.358 81.3-116.9-117.0-175.8 10.7 11.0 -5.7 30 30 A L S S+ 0 0 167 -2,-0.1 2,-0.2 3,-0.1 -1,-0.0 0.281 96.7 48.7-103.7 -12.2 8.9 14.2 -4.9 31 31 A T - 0 0 67 1,-0.1 3,-0.1 2,-0.1 -2,-0.1 -0.201 60.2-153.5-113.4-155.2 5.9 12.7 -3.4 32 32 A V S S+ 0 0 91 1,-0.3 -6,-0.3 -2,-0.2 2,-0.2 0.022 79.8 84.1-173.6 -52.1 5.5 10.1 -0.8 33 33 A P + 0 0 50 0, 0.0 -1,-0.3 0, 0.0 -26,-0.1 -0.542 41.8 128.1 -77.7 142.5 2.1 9.1 -2.3 34 34 A V - 0 0 44 -28,-0.3 2,-0.2 1,-0.3 -9,-0.2 0.190 64.0 -45.3-154.4 -70.2 2.2 6.6 -5.3 35 35 A K - 0 0 130 -11,-1.8 -1,-0.3 -29,-0.2 2,-0.3 -0.883 34.7-148.1-155.7-172.7 -0.1 3.5 -4.7 36 36 A R + 0 0 20 -13,-0.3 2,-0.3 -2,-0.2 -13,-0.3 -0.908 13.9 167.2-156.9 166.6 -1.6 0.6 -2.6 37 37 A G E -B 22 0B 26 -15,-1.8 -15,-2.1 -2,-0.3 2,-0.1 -0.783 43.5 -80.2-152.8-168.5 -2.9 -2.9 -3.2 38 38 A b E -B 21 0B 27 -17,-0.3 -17,-0.3 -2,-0.3 2,-0.3 -0.193 42.7-153.0 -84.7-176.4 -3.7 -5.8 -0.8 39 39 A I E -B 20 0B 16 -19,-1.4 -20,-1.5 -18,-0.1 -19,-0.6 -0.941 25.8-159.4-154.3 164.6 -1.1 -8.2 0.7 40 40 A D S S+ 0 0 101 1,-0.4 2,-0.3 -2,-0.3 -1,-0.1 0.507 88.6 12.6-115.2 -32.9 -0.8 -11.8 2.0 41 41 A V - 0 0 111 -22,-0.0 -1,-0.4 -21,-0.0 12,-0.0 -0.974 59.9-150.0-144.9 138.7 2.4 -11.2 4.1 42 42 A c + 0 0 46 -2,-0.3 3,-0.1 -3,-0.1 -3,-0.0 -0.931 33.6 153.3-105.1 102.3 4.3 -8.1 5.2 43 43 A P - 0 0 93 0, 0.0 2,-0.1 0, 0.0 -1,-0.1 0.490 57.1 -41.7 -82.6-117.5 8.0 -9.0 5.4 44 44 A K - 0 0 179 -2,-0.0 2,-0.3 1,-0.0 0, 0.0 -0.282 49.9-116.1-108.5-167.6 10.2 -6.0 4.9 45 45 A N - 0 0 103 -2,-0.1 5,-0.1 -3,-0.1 2,-0.1 -0.845 24.2-132.2-133.3 149.2 10.5 -3.0 2.7 46 46 A S - 0 0 83 3,-0.9 5,-0.2 -2,-0.3 -1,-0.0 -0.300 26.0-110.0 -96.0-179.3 13.2 -2.2 0.3 47 47 A A S S+ 0 0 90 -2,-0.1 3,-0.1 1,-0.1 -20,-0.1 0.034 116.4 52.5 -98.2 19.4 15.2 1.1 -0.2 48 48 A L S S+ 0 0 120 1,-0.5 -21,-0.8 -22,-0.1 2,-0.4 0.622 113.5 31.7-119.1 -39.8 13.3 1.6 -3.5 49 49 A V E S-C 26 0B 35 -23,-0.2 -3,-0.9 -22,-0.1 2,-0.9 -0.961 73.3-131.2-129.3 140.9 9.7 1.2 -2.6 50 50 A K E -C 25 0B 97 -25,-1.2 -25,-2.1 -2,-0.4 2,-0.9 -0.864 19.6-163.7 -89.8 103.8 8.0 2.1 0.7 51 51 A Y E +C 24 0B 81 -2,-0.9 2,-0.7 -27,-0.2 -27,-0.2 -0.870 11.5 177.6 -85.0 102.7 5.9 -0.9 1.7 52 52 A V E +C 23 0B 64 -29,-2.0 -29,-1.6 -2,-0.9 -2,-0.1 -0.731 13.4 174.5-104.8 76.3 3.6 0.6 4.3 53 53 A c E +C 22 0B 38 -2,-0.7 2,-0.3 -31,-0.3 -31,-0.2 -0.291 0.8 169.0 -68.3 162.2 1.6 -2.6 4.9 54 54 A d E -C 21 0B 32 -33,-1.3 -33,-1.5 2,-0.1 -2,-0.0 -0.898 36.3-149.6-171.6 159.4 -1.0 -2.4 7.7 55 55 A N + 0 0 101 -2,-0.3 4,-0.1 4,-0.2 -33,-0.1 0.053 65.0 105.0-119.8 17.7 -3.8 -4.5 9.0 56 56 A T S >> S- 0 0 64 4,-0.2 3,-2.5 -35,-0.1 4,-1.0 -0.150 96.9 -62.4 -85.6-165.7 -6.0 -1.7 10.3 57 57 A D T 34 S+ 0 0 94 1,-0.3 -53,-0.8 3,-0.2 -55,-0.5 0.638 136.7 55.4 -39.3 -28.1 -9.3 -0.2 8.8 58 58 A R T 34 S+ 0 0 131 -55,-0.2 -53,-0.3 -54,-0.1 -1,-0.3 0.129 124.3 20.8-103.2 20.5 -7.3 0.9 5.8 59 59 A d T <4 0 0 0 -3,-2.5 -2,-0.2 -57,-0.4 -4,-0.2 0.258 360.0 360.0-150.8 -80.2 -6.1 -2.6 5.2 60 60 A N < 0 0 48 -4,-1.0 -3,-0.2 -59,-0.2 -4,-0.2 0.435 360.0 360.0-153.7 360.0 -8.1 -5.6 6.7