==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 25-JAN-02 1KV4 . COMPND 2 MOLECULE: MORICIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BOMBYX MORI; . AUTHOR H.HEMMI,J.ISHIBASHI,S.HARA,M.YAMAKAWA . 42 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4431.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 85.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 64.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 135 0, 0.0 2,-2.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 156.8 -31.8 6.7 -1.3 2 2 A K + 0 0 201 1,-0.2 0, 0.0 2,-0.1 0, 0.0 -0.293 360.0 92.0 -56.3 82.1 -31.3 3.7 -3.5 3 3 A I + 0 0 97 -2,-2.0 -1,-0.2 3,-0.0 0, 0.0 -0.096 38.5 118.5-173.6 58.8 -27.5 3.4 -2.8 4 4 A P S >> S+ 0 0 80 0, 0.0 4,-2.8 0, 0.0 3,-0.7 0.908 80.5 35.8 -93.2 -69.9 -26.7 1.1 0.1 5 5 A I H 3> S+ 0 0 94 1,-0.3 4,-2.5 2,-0.2 5,-0.2 0.924 124.5 45.1 -51.5 -48.6 -24.6 -1.8 -1.1 6 6 A K H 3> S+ 0 0 144 1,-0.2 4,-1.4 2,-0.2 -1,-0.3 0.712 111.4 57.4 -68.4 -19.6 -22.8 0.5 -3.5 7 7 A A H <> S+ 0 0 36 -3,-0.7 4,-1.9 2,-0.2 -2,-0.2 0.928 111.0 38.1 -76.2 -47.9 -22.6 3.0 -0.6 8 8 A I H X S+ 0 0 97 -4,-2.8 4,-2.6 2,-0.2 -2,-0.2 0.871 118.6 50.5 -70.5 -37.1 -20.7 0.7 1.7 9 9 A K H X S+ 0 0 109 -4,-2.5 4,-1.7 -5,-0.3 -1,-0.2 0.855 108.0 53.6 -68.5 -35.6 -18.7 -0.7 -1.2 10 10 A T H X S+ 0 0 93 -4,-1.4 4,-1.2 2,-0.2 -2,-0.2 0.931 114.6 39.8 -65.1 -45.5 -17.8 2.9 -2.3 11 11 A V H X S+ 0 0 92 -4,-1.9 4,-2.3 1,-0.2 5,-0.3 0.880 113.0 55.9 -70.8 -37.6 -16.5 3.8 1.2 12 12 A G H X S+ 0 0 36 -4,-2.6 4,-1.5 1,-0.2 -1,-0.2 0.822 105.1 53.8 -63.2 -30.0 -14.9 0.4 1.5 13 13 A K H X S+ 0 0 128 -4,-1.7 4,-2.2 2,-0.2 -1,-0.2 0.848 108.4 49.4 -72.3 -35.4 -13.1 1.1 -1.7 14 14 A A H X S+ 0 0 66 -4,-1.2 4,-2.8 2,-0.2 5,-0.2 0.980 116.2 39.2 -67.7 -57.2 -11.7 4.4 -0.4 15 15 A V H X S+ 0 0 94 -4,-2.3 4,-2.5 1,-0.2 5,-0.3 0.816 116.0 56.4 -62.2 -29.6 -10.4 3.0 2.9 16 16 A G H X S+ 0 0 30 -4,-1.5 4,-1.3 -5,-0.3 -1,-0.2 0.912 114.4 35.3 -69.0 -43.2 -9.3 -0.0 1.0 17 17 A K H X S+ 0 0 126 -4,-2.2 4,-2.2 2,-0.2 -2,-0.2 0.770 119.3 52.7 -81.1 -27.0 -7.2 1.9 -1.5 18 18 A G H X S+ 0 0 36 -4,-2.8 4,-1.3 -5,-0.2 -2,-0.2 0.935 111.4 43.3 -73.3 -47.1 -6.2 4.4 1.2 19 19 A L H X S+ 0 0 112 -4,-2.5 4,-0.9 -5,-0.2 -2,-0.2 0.877 117.6 47.7 -65.5 -38.0 -4.9 1.9 3.7 20 20 A R H >X>S+ 0 0 148 -4,-1.3 4,-3.4 -5,-0.3 3,-0.8 0.925 103.3 60.0 -69.7 -44.0 -3.2 -0.1 1.0 21 21 A A H 3X5S+ 0 0 47 -4,-2.2 4,-0.9 1,-0.3 -1,-0.2 0.871 108.3 46.9 -51.3 -35.4 -1.6 3.1 -0.5 22 22 A I H 3X5S+ 0 0 117 -4,-1.3 4,-0.7 2,-0.2 -1,-0.3 0.773 113.4 50.5 -76.3 -25.6 0.0 3.4 3.0 23 23 A N H XX5S+ 0 0 46 -4,-0.9 4,-3.6 -3,-0.8 3,-0.6 0.958 109.3 46.0 -75.1 -54.7 0.9 -0.3 2.7 24 24 A I H 3X5S+ 0 0 96 -4,-3.4 4,-1.1 1,-0.3 -1,-0.2 0.786 117.4 48.5 -59.5 -23.9 2.5 -0.3 -0.7 25 25 A A H 3< S+ 0 0 111 -4,-0.5 4,-1.2 2,-0.2 5,-0.3 0.996 112.4 36.4 -70.2 -73.4 10.2 1.5 2.6 30 30 A D H >X S+ 0 0 140 -4,-1.4 4,-0.7 1,-0.2 3,-0.6 0.879 123.3 48.3 -47.1 -42.0 11.6 -1.6 4.4 31 31 A V H >X S+ 0 0 67 -4,-2.2 4,-1.6 1,-0.2 3,-1.4 0.941 101.9 60.6 -64.6 -48.5 12.1 -3.0 0.9 32 32 A F H 3< S+ 0 0 135 -4,-2.2 -1,-0.2 1,-0.3 -2,-0.2 0.732 116.0 36.2 -51.4 -22.0 13.8 0.1 -0.3 33 33 A N H X< S+ 0 0 111 -4,-1.2 3,-0.9 -3,-0.6 -1,-0.3 0.496 103.3 73.4-108.0 -10.1 16.3 -0.6 2.4 34 34 A F H << S+ 0 0 174 -3,-1.4 -2,-0.2 -4,-0.7 -3,-0.2 0.830 92.7 55.4 -73.0 -33.2 16.2 -4.4 2.1 35 35 A L T 3< S+ 0 0 111 -4,-1.6 -1,-0.3 1,-0.2 -3,-0.1 -0.068 83.6 100.0 -90.9 34.1 18.2 -4.3 -1.2 36 36 A K < - 0 0 120 -3,-0.9 -1,-0.2 -5,-0.1 -3,-0.0 -0.632 57.3-173.4-120.7 72.3 21.0 -2.4 0.6 37 37 A P - 0 0 68 0, 0.0 3,-0.4 0, 0.0 -2,-0.0 0.148 46.3 -89.5 -54.1 177.4 23.7 -5.0 1.4 38 38 A K S S+ 0 0 201 1,-0.2 3,-0.2 2,-0.1 -2,-0.0 0.627 104.4 100.9 -67.9 -12.3 26.8 -4.2 3.4 39 39 A K + 0 0 150 1,-0.2 2,-2.5 2,-0.0 -1,-0.2 0.894 40.2 158.4 -35.2 -74.2 28.5 -3.3 0.2 40 40 A R + 0 0 214 -3,-0.4 2,-0.6 2,-0.2 -1,-0.2 -0.320 47.0 92.2 77.4 -58.0 28.1 0.5 0.6 41 41 A K 0 0 157 -2,-2.5 -1,-0.1 -3,-0.2 -2,-0.0 -0.581 360.0 360.0 -73.3 116.2 30.9 1.2 -1.8 42 42 A A 0 0 157 -2,-0.6 -2,-0.2 -3,-0.1 0, 0.0 -0.331 360.0 360.0 55.9 360.0 29.4 1.6 -5.3