==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER UNKNOWN FUNCTION 21-MAY-10 2KYA . COMPND 2 MOLECULE: PATELLAMIDE PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR W.E.HOUSSEN,S.H.WRIGHT,A.P.KALVERDA,G.S.THOMPSON,S.M.KELLY,M . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3943.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 58.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 35.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 230 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 84.0 23.4 -5.0 -1.2 2 2 A N - 0 0 114 1,-0.0 4,-0.1 2,-0.0 3,-0.0 -0.992 360.0-176.0-139.5 146.2 19.7 -5.2 -2.4 3 3 A K + 0 0 177 -2,-0.3 -1,-0.0 2,-0.1 0, 0.0 -0.216 54.7 106.8-134.3 43.7 16.9 -2.7 -2.7 4 4 A K S S+ 0 0 169 3,-0.1 -1,-0.1 1,-0.0 3,-0.0 0.864 101.5 9.6 -88.4 -42.5 14.0 -4.9 -3.8 5 5 A N S S+ 0 0 128 1,-0.1 2,-1.1 2,-0.1 -2,-0.1 0.530 111.1 90.0-112.1 -14.6 12.0 -4.8 -0.5 6 6 A I - 0 0 106 -4,-0.1 -1,-0.1 0, 0.0 0, 0.0 -0.721 67.1-158.0 -89.6 95.0 14.1 -2.1 1.2 7 7 A L - 0 0 80 -2,-1.1 -3,-0.1 1,-0.1 -2,-0.1 -0.316 10.5-129.3 -69.2 154.7 12.4 1.2 0.4 8 8 A P - 0 0 96 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 0.242 55.9 -52.3 -83.6-150.3 14.5 4.4 0.6 9 9 A Q S S+ 0 0 194 1,-0.2 -2,-0.0 2,-0.1 0, 0.0 0.448 123.8 81.0 -69.1 2.2 13.6 7.7 2.3 10 10 A Q + 0 0 122 1,-0.1 -1,-0.2 2,-0.0 -3,-0.0 0.988 48.2 165.2 -71.2 -80.7 10.4 7.5 0.4 11 11 A G > + 0 0 21 -3,-0.1 3,-0.6 1,-0.1 4,-0.5 0.589 35.0 127.9 70.6 8.2 8.1 5.1 2.3 12 12 A Q T >> + 0 0 132 1,-0.2 3,-1.5 2,-0.2 4,-1.0 0.917 68.7 49.3 -61.4 -47.2 5.3 6.5 0.1 13 13 A P H 3> S+ 0 0 52 0, 0.0 4,-2.0 0, 0.0 -1,-0.2 0.576 100.0 68.5 -71.2 -9.5 4.0 3.0 -1.0 14 14 A V H <> S+ 0 0 69 -3,-0.6 4,-0.8 2,-0.2 -2,-0.2 0.693 102.8 44.2 -80.4 -20.1 4.1 2.0 2.6 15 15 A I H <> S+ 0 0 118 -3,-1.5 4,-1.3 -4,-0.5 -1,-0.2 0.706 114.8 48.1 -93.1 -26.1 1.2 4.3 3.2 16 16 A R H X S+ 0 0 181 -4,-1.0 4,-0.9 2,-0.2 -2,-0.2 0.882 112.8 47.8 -78.9 -43.1 -0.7 3.3 0.1 17 17 A L H X S+ 0 0 129 -4,-2.0 4,-2.4 3,-0.2 5,-0.2 0.900 110.8 53.1 -63.9 -43.9 -0.3 -0.4 0.8 18 18 A T H >X S+ 0 0 86 -4,-0.8 4,-1.3 1,-0.2 3,-0.7 0.990 120.0 29.3 -55.3 -72.3 -1.4 0.0 4.4 19 19 A A H 3X S+ 0 0 60 -4,-1.3 4,-2.1 1,-0.2 -1,-0.2 0.656 116.9 67.3 -64.2 -14.1 -4.7 1.8 3.8 20 20 A G H 3< S+ 0 0 32 -4,-0.9 -1,-0.2 2,-0.2 -2,-0.2 0.900 96.5 49.4 -72.8 -42.6 -4.7 -0.1 0.5 21 21 A Q H XX S+ 0 0 131 -4,-2.4 4,-1.2 -3,-0.7 3,-0.6 0.908 116.5 42.4 -62.8 -44.1 -5.2 -3.5 2.1 22 22 A L H 3X S+ 0 0 94 -4,-1.3 4,-0.7 1,-0.2 3,-0.4 0.908 111.9 53.0 -69.6 -43.4 -8.1 -2.2 4.3 23 23 A S H 3X S+ 0 0 78 -4,-2.1 4,-0.6 1,-0.2 -1,-0.2 0.470 106.2 59.2 -71.4 0.3 -9.6 -0.2 1.5 24 24 A S H <> S+ 0 0 70 -3,-0.6 4,-1.3 2,-0.2 -1,-0.2 0.806 96.6 55.3 -94.1 -40.2 -9.5 -3.5 -0.5 25 25 A Q H < S+ 0 0 112 -4,-1.2 4,-0.2 -3,-0.4 -2,-0.2 0.653 115.1 43.2 -67.2 -15.4 -11.6 -5.5 1.9 26 26 A L H >< S+ 0 0 92 -4,-0.7 3,-0.7 2,-0.1 -1,-0.2 0.746 98.5 70.1 -98.8 -33.4 -14.2 -2.9 1.4 27 27 A A H >< S+ 0 0 63 -4,-0.6 3,-2.0 1,-0.3 -2,-0.2 0.914 96.9 54.7 -49.1 -47.8 -13.9 -2.5 -2.3 28 28 A E T 3< S+ 0 0 141 -4,-1.3 -1,-0.3 1,-0.3 -2,-0.1 0.854 117.9 35.5 -54.3 -37.9 -15.4 -5.9 -2.7 29 29 A L T < S- 0 0 120 -3,-0.7 -1,-0.3 -4,-0.2 -2,-0.2 -0.233 90.7-176.4-110.7 40.9 -18.4 -4.7 -0.7 30 30 A S < - 0 0 78 -3,-2.0 2,-0.5 1,-0.1 -3,-0.1 -0.089 34.6-108.7 -42.5 126.9 -18.3 -1.2 -2.1 31 31 A E - 0 0 135 1,-0.1 2,-1.4 2,-0.1 -1,-0.1 -0.484 26.1-147.6 -66.0 115.3 -20.9 1.0 -0.3 32 32 A E + 0 0 196 -2,-0.5 2,-0.2 -3,-0.1 -1,-0.1 -0.653 55.9 111.1 -88.1 85.1 -23.7 1.6 -2.8 33 33 A A 0 0 84 -2,-1.4 -2,-0.1 0, 0.0 -1,-0.0 -0.771 360.0 360.0-161.0 109.6 -24.9 5.1 -1.7 34 34 A L 0 0 253 -2,-0.2 -2,-0.0 0, 0.0 -3,-0.0 0.485 360.0 360.0-126.1 360.0 -24.5 8.3 -3.6