==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 01-JUN-11 2LDS . COMPND 2 MOLECULE: INSECTICIDAL TOXIN LAIT1; . SOURCE 2 ORGANISM_SCIENTIFIC: LIOCHELES AUSTRALASIAE; . AUTHOR S.HORITA,T.MIYAKAWA,K.NAGATA,M.TANOKURA . 36 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3360.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 218 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -57.0 -13.9 -6.2 -3.6 2 2 A F - 0 0 98 1,-0.1 13,-0.0 12,-0.1 0, 0.0 -0.811 360.0-126.4-120.2 161.1 -10.9 -4.2 -4.7 3 3 A P - 0 0 106 0, 0.0 -1,-0.1 0, 0.0 12,-0.1 0.934 44.3-179.4 -69.8 -48.4 -7.8 -4.8 -6.8 4 4 A L - 0 0 33 13,-0.0 2,-0.3 14,-0.0 7,-0.1 0.276 9.2-147.5 62.1 163.0 -5.2 -3.7 -4.2 5 5 A S - 0 0 41 5,-0.3 2,-0.3 10,-0.1 13,-0.3 -0.885 7.7-110.7-152.0-179.0 -1.5 -3.7 -4.7 6 6 A K S S- 0 0 145 -2,-0.3 24,-0.0 2,-0.1 23,-0.0 -0.891 70.0 -0.6-123.9 154.5 1.9 -4.1 -3.0 7 7 A E S > S- 0 0 60 -2,-0.3 3,-0.6 2,-0.1 23,-0.1 -0.067 116.8 -2.9 63.4-169.9 4.7 -1.6 -2.3 8 8 A Y T 3 S+ 0 0 157 1,-0.2 21,-0.2 23,-0.1 -2,-0.1 -0.290 101.6 85.7 -54.3 124.7 4.6 2.0 -3.2 9 9 A E T 3 S- 0 0 107 19,-1.5 2,-0.3 20,-0.1 -1,-0.2 -0.107 89.3 -43.6 179.7 -66.0 1.4 2.7 -5.2 10 10 A T < - 0 0 41 18,-0.9 -5,-0.3 -3,-0.6 18,-0.2 -0.927 31.0-174.9 178.9 158.4 -1.7 3.4 -3.0 11 11 A a + 0 0 14 -2,-0.3 16,-0.1 -7,-0.1 17,-0.1 -0.176 25.6 165.5-164.0 56.1 -3.7 2.4 0.1 12 12 A V > - 0 0 47 15,-0.1 3,-0.6 14,-0.1 5,-0.1 0.059 57.5 -81.4 -66.5-176.8 -6.9 4.3 0.3 13 13 A R T 3 S+ 0 0 234 1,-0.3 3,-0.2 3,-0.1 -1,-0.0 0.963 135.2 38.3 -51.9 -60.0 -9.8 3.4 2.6 14 14 A P T 3 S+ 0 0 67 0, 0.0 2,-0.5 0, 0.0 -1,-0.3 0.559 112.1 66.9 -69.8 -7.5 -11.2 0.7 0.3 15 15 A R < + 0 0 78 -3,-0.6 2,-0.7 -12,-0.1 -10,-0.1 -0.601 68.3 174.2-115.6 69.6 -7.6 -0.2 -0.6 16 16 A K - 0 0 146 -2,-0.5 -4,-0.1 -3,-0.2 -3,-0.1 -0.674 40.0-113.9 -80.9 114.3 -6.3 -1.7 2.7 17 17 A b - 0 0 29 -2,-0.7 4,-0.2 1,-0.1 -11,-0.1 -0.241 25.3-159.7 -49.2 115.7 -2.8 -3.1 2.1 18 18 A Q S S+ 0 0 152 -13,-0.3 -1,-0.1 2,-0.1 -12,-0.1 0.977 71.2 56.5 -63.5 -58.1 -3.2 -6.9 2.6 19 19 A P S S- 0 0 52 0, 0.0 2,-2.4 0, 0.0 0, 0.0 -0.109 113.3 -74.8 -69.8 171.0 0.5 -7.6 3.3 20 20 A P S S+ 0 0 97 0, 0.0 2,-0.2 0, 0.0 -2,-0.1 -0.415 79.2 147.6 -69.8 75.3 2.6 -6.0 6.0 21 21 A L - 0 0 34 -2,-2.4 2,-0.4 -4,-0.2 10,-0.2 -0.552 39.1-141.6-106.6 173.2 3.0 -2.6 4.3 22 22 A K B -A 30 0A 128 8,-1.7 8,-1.7 -2,-0.2 2,-0.0 -0.952 12.3-162.8-142.3 119.1 3.3 0.9 5.7 23 23 A a - 0 0 58 -2,-0.4 7,-0.1 6,-0.3 -15,-0.0 -0.065 8.4-154.5 -85.1-170.0 1.7 4.1 4.1 24 24 A N - 0 0 92 5,-0.0 -1,-0.1 -2,-0.0 0, 0.0 0.553 54.3 -76.0-131.7 -61.1 2.6 7.7 4.8 25 25 A K S S+ 0 0 187 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 0.161 119.4 64.8-179.6 -34.5 -0.3 10.1 4.1 26 26 A A S S- 0 0 73 -14,-0.0 -14,-0.1 -16,-0.0 -15,-0.0 0.087 114.9 -98.8 -94.1 22.5 -0.7 10.4 0.3 27 27 A Q S S+ 0 0 77 -16,-0.1 -15,-0.1 -17,-0.1 -4,-0.0 0.927 80.0 125.8 59.0 98.9 -1.6 6.8 -0.0 28 28 A I - 0 0 52 -18,-0.2 -19,-1.5 -17,-0.1 -18,-0.9 0.420 44.6-153.5-146.3 -49.7 1.5 4.8 -1.1 29 29 A b + 0 0 2 -21,-0.2 -6,-0.3 -20,-0.2 2,-0.3 0.692 27.5 148.3 66.7 125.6 2.2 1.9 1.2 30 30 A V B -A 22 0A 31 -8,-1.7 -8,-1.7 -23,-0.1 5,-0.1 -0.961 22.3-164.3-169.1-179.1 5.7 0.6 1.6 31 31 A D > - 0 0 13 3,-0.3 3,-0.5 -2,-0.3 -23,-0.1 -0.957 37.7-108.7-175.1 158.9 8.3 -1.0 3.9 32 32 A P T 3 S+ 0 0 92 0, 0.0 3,-0.3 0, 0.0 -1,-0.1 0.691 108.5 73.3 -69.8 -19.0 12.0 -1.7 4.3 33 33 A K T 3 S- 0 0 154 1,-0.3 2,-0.3 -3,-0.0 -12,-0.1 0.921 118.9 -0.4 -61.6 -45.8 11.4 -5.4 3.7 34 34 A K S < S+ 0 0 154 -3,-0.5 2,-0.4 2,-0.0 -3,-0.3 -0.846 122.8 13.3-151.9 109.8 10.8 -4.8 -0.0 35 35 A G 0 0 40 -2,-0.3 -5,-0.1 -3,-0.3 -28,-0.0 -0.987 360.0 360.0 136.4-127.9 11.0 -1.4 -1.8 36 36 A W 0 0 251 -2,-0.4 -3,-0.0 -5,-0.1 -6,-0.0 0.005 360.0 360.0 61.7 360.0 12.4 1.9 -0.5