==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=14-JUN-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 26-JUN-11 2LEY . COMPND 2 MOLECULE: ALPHA-DEFENSIN 4; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR K.ROSENGREN,H.S.ANDERSSON,L.M.HAUGAARD-KEDSTROM,E.BENGTSSON, . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2929.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 65.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 40.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 18.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 50 0, 0.0 31,-1.7 0, 0.0 28,-0.0 0.000 360.0 360.0 360.0-146.9 -1.7 9.5 3.2 2 2 A L + 0 0 137 29,-0.2 2,-0.4 2,-0.1 29,-0.1 -0.270 360.0 98.0-137.4 47.2 1.9 9.7 1.9 3 3 A L S S- 0 0 135 25,-0.0 2,-0.1 2,-0.0 25,-0.0 -0.997 70.0-120.1-139.7 131.2 3.6 6.8 3.5 4 4 A a + 0 0 51 -2,-0.4 2,-0.3 25,-0.2 25,-0.3 -0.450 41.4 159.9 -71.2 140.6 4.3 3.4 2.0 5 5 A Y E -A 28 0A 92 23,-2.9 23,-2.6 -2,-0.1 2,-0.7 -0.983 45.9 -92.7-157.7 156.1 2.8 0.3 3.8 6 6 A b E -A 27 0A 50 -2,-0.3 21,-0.2 21,-0.2 2,-0.2 -0.657 41.6-145.1 -79.6 115.1 1.9 -3.3 3.1 7 7 A G E -A 26 0A 8 19,-3.0 19,-2.0 -2,-0.7 2,-0.7 -0.515 13.6-120.8 -79.6 145.8 -1.7 -3.5 1.9 8 8 A K E S-A 25 0A 157 2,-0.3 2,-1.8 17,-0.2 17,-0.2 -0.785 85.8 -25.8 -90.6 115.6 -3.8 -6.5 2.8 9 9 A G S S- 0 0 39 15,-2.7 2,-0.3 -2,-0.7 -1,-0.1 -0.197 135.7 -8.0 78.3 -47.7 -5.0 -8.3 -0.3 10 10 A H S S- 0 0 139 -2,-1.8 -2,-0.3 16,-0.1 2,-0.1 -0.930 74.1-101.8-174.2 153.3 -4.8 -5.2 -2.4 11 11 A c - 0 0 22 -2,-0.3 2,-0.2 -4,-0.2 3,-0.1 -0.352 37.3-126.0 -78.3 163.3 -4.1 -1.4 -2.1 12 12 A K > - 0 0 112 1,-0.2 3,-2.3 -2,-0.1 -1,-0.1 -0.590 44.3 -59.4-106.6 170.6 -7.0 1.1 -2.2 13 13 A R T 3 S+ 0 0 238 1,-0.3 -1,-0.2 -2,-0.2 3,-0.1 -0.157 124.1 29.0 -49.5 135.2 -7.5 4.2 -4.4 14 14 A G T 3 S+ 0 0 35 1,-0.3 17,-2.3 -3,-0.1 2,-0.4 0.010 99.7 101.4 100.8 -27.5 -4.7 6.7 -4.1 15 15 A E E < -B 30 0A 22 -3,-2.3 2,-0.5 15,-0.3 -1,-0.3 -0.758 62.5-145.1 -95.2 136.5 -2.1 4.1 -3.3 16 16 A R E -B 29 0A 179 13,-2.2 13,-2.8 -2,-0.4 2,-0.2 -0.875 17.3-127.1-103.4 128.1 0.3 2.8 -5.8 17 17 A V E +B 28 0A 91 -2,-0.5 11,-0.2 11,-0.2 3,-0.1 -0.484 27.4 175.5 -73.3 138.2 1.4 -0.8 -5.7 18 18 A R E - 0 0 159 9,-2.8 2,-0.3 1,-0.3 10,-0.1 -0.140 57.5 -73.9-135.8 38.7 5.2 -1.4 -5.7 19 19 A G E - 0 0 40 8,-0.3 8,-1.4 2,-0.0 -1,-0.3 -0.826 68.6 -54.1 110.1-148.2 5.4 -5.2 -5.3 20 20 A T E +B 26 0A 114 6,-0.4 6,-0.3 -2,-0.3 3,-0.1 -0.928 31.7 178.6-134.7 157.5 4.8 -7.3 -2.2 21 21 A b E + 0 0 53 4,-1.7 2,-0.2 1,-0.3 5,-0.2 -0.122 66.4 7.9-154.4 46.2 6.0 -7.4 1.4 22 22 A G E > S-B 25 0A 45 3,-0.6 3,-2.3 5,-0.0 2,-0.5 -0.814 99.4 -48.8 156.0 165.4 4.2 -10.2 3.2 23 23 A I T 3 S- 0 0 157 1,-0.3 3,-0.1 -2,-0.2 -3,-0.0 -0.476 129.9 -11.8 -64.6 112.3 1.9 -13.2 2.8 24 24 A R T 3 S+ 0 0 202 -2,-0.5 -15,-2.7 1,-0.2 2,-0.4 0.657 116.5 121.1 67.2 18.3 -0.9 -11.9 0.8 25 25 A F E < -AB 8 22A 79 -3,-2.3 -4,-1.7 -17,-0.2 -3,-0.6 -0.926 43.8-167.2-115.2 136.9 0.5 -8.4 1.4 26 26 A L E -AB 7 20A 26 -19,-2.0 -19,-3.0 -2,-0.4 2,-0.5 -0.855 30.7-101.3-121.4 155.4 1.6 -6.0 -1.3 27 27 A Y E -A 6 0A 75 -8,-1.4 -9,-2.8 -2,-0.3 2,-0.5 -0.650 41.5-172.9 -78.7 121.1 3.7 -2.8 -1.1 28 28 A c E -AB 5 17A 0 -23,-2.6 -23,-2.9 -2,-0.5 -11,-0.2 -0.968 13.2-175.2-121.3 128.5 1.4 0.2 -1.3 29 29 A a E - B 0 16A 18 -13,-2.8 -13,-2.2 -2,-0.5 -25,-0.2 -0.883 14.7-159.1-124.4 98.0 2.6 3.8 -1.6 30 30 A P E - B 0 15A 5 0, 0.0 -15,-0.3 0, 0.0 -16,-0.1 -0.445 15.5-164.1 -76.6 149.1 -0.3 6.4 -1.4 31 31 A R 0 0 180 -17,-2.3 -29,-0.2 1,-0.1 -16,-0.1 -0.112 360.0 360.0-121.9 32.5 -0.0 9.9 -2.8 32 32 A R 0 0 219 -31,-1.7 -1,-0.1 -18,-0.1 0, 0.0 -0.858 360.0 360.0-169.2 360.0 -3.1 11.2 -1.0