==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-NOV-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 11-JUL-12 2LVT . COMPND 2 MOLECULE: ZINC FINGER AND BTB DOMAIN-CONTAINING PROTEIN 17; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.BEDARD,L.MALTAIS,M.BEAULIEU,D.BERNARD,P.LAVIGNE . 29 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2602.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 65.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 37.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 30 A K 0 0 189 0, 0.0 2,-0.2 0, 0.0 11,-0.1 0.000 360.0 360.0 360.0 132.9 -11.5 2.8 -3.7 2 31 A P + 0 0 73 0, 0.0 2,-0.2 0, 0.0 11,-0.2 -0.418 360.0 174.4 -58.3 122.5 -10.3 0.2 -1.1 3 32 A C E -A 12 0A 51 9,-1.0 9,-2.2 -2,-0.2 2,-0.4 -0.753 27.0-114.0-129.3 172.4 -7.2 -1.5 -2.5 4 33 A Q E -A 11 0A 107 -2,-0.2 2,-1.2 7,-0.2 7,-0.3 -0.899 28.0-112.6-113.7 139.0 -4.5 -3.9 -1.5 5 34 A C >> - 0 0 0 5,-3.1 4,-3.6 -2,-0.4 3,-0.6 -0.597 30.8-152.7 -61.5 97.4 -0.8 -3.4 -1.0 6 35 A V T 34 S+ 0 0 128 -2,-1.2 -1,-0.2 1,-0.2 5,-0.0 0.705 89.4 57.9 -53.3 -20.0 0.1 -5.6 -4.0 7 36 A M T 34 S+ 0 0 105 3,-0.1 -1,-0.2 1,-0.1 -2,-0.0 0.950 128.3 4.0 -76.8 -50.4 3.4 -6.2 -2.2 8 37 A C T <4 S- 0 0 57 -3,-0.6 -2,-0.2 2,-0.1 3,-0.1 0.609 95.6-113.2-116.9 -16.7 2.2 -7.7 1.1 9 38 A G < + 0 0 50 -4,-3.6 2,-0.5 1,-0.3 -3,-0.1 0.465 60.6 150.3 96.4 2.3 -1.6 -8.0 0.7 10 39 A K - 0 0 122 -5,-0.4 -5,-3.1 -6,-0.1 2,-0.3 -0.581 31.2-156.5 -70.3 119.1 -2.5 -5.4 3.3 11 40 A A E -A 4 0A 58 -2,-0.5 2,-0.3 -7,-0.3 -7,-0.2 -0.745 8.8-166.8 -99.4 146.5 -5.8 -3.8 2.3 12 41 A F E -A 3 0A 78 -9,-2.2 -9,-1.0 -2,-0.3 6,-0.1 -0.981 28.8-134.3-134.1 147.4 -7.0 -0.3 3.3 13 42 A T S S+ 0 0 116 -2,-0.3 2,-0.5 -11,-0.2 -1,-0.1 0.653 97.6 63.4 -71.4 -16.6 -10.3 1.4 3.1 14 43 A Q S > S- 0 0 126 1,-0.1 4,-1.9 -11,-0.1 -1,-0.1 -0.953 71.3-156.2-115.9 119.7 -8.5 4.5 1.9 15 44 A A H > S+ 0 0 33 -2,-0.5 4,-2.4 1,-0.2 -1,-0.1 0.853 92.8 50.3 -61.0 -40.3 -6.7 4.2 -1.5 16 45 A S H > S+ 0 0 99 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.871 108.8 50.8 -73.2 -34.8 -4.2 7.0 -0.9 17 46 A S H > S+ 0 0 57 2,-0.2 4,-2.3 1,-0.2 -1,-0.2 0.896 110.6 53.1 -63.1 -38.1 -3.2 5.7 2.5 18 47 A L H X S+ 0 0 4 -4,-1.9 4,-3.5 2,-0.2 5,-0.3 0.942 104.9 52.5 -57.8 -54.3 -2.7 2.4 0.7 19 48 A I H X S+ 0 0 100 -4,-2.4 4,-1.9 1,-0.2 -1,-0.2 0.892 109.7 49.1 -52.8 -44.1 -0.5 4.0 -1.9 20 49 A A H X S+ 0 0 58 -4,-2.0 4,-0.6 1,-0.2 -1,-0.2 0.938 114.3 46.5 -60.5 -45.7 1.7 5.5 0.9 21 50 A H H >X S+ 0 0 48 -4,-2.3 3,-1.3 1,-0.2 4,-0.5 0.919 110.9 50.6 -60.9 -47.3 1.8 2.0 2.5 22 51 A V H >X S+ 0 0 26 -4,-3.5 3,-0.8 1,-0.3 4,-0.8 0.830 100.8 64.3 -66.3 -29.2 2.6 0.2 -0.8 23 52 A R H 3X S+ 0 0 120 -4,-1.9 4,-3.4 -5,-0.3 -1,-0.3 0.766 88.4 72.0 -63.3 -24.1 5.5 2.7 -1.4 24 53 A Q H << S+ 0 0 141 -3,-1.3 -1,-0.2 -4,-0.6 -2,-0.2 0.878 98.6 44.4 -62.3 -40.0 7.2 1.3 1.7 25 54 A H H << S+ 0 0 87 -3,-0.8 -1,-0.3 -4,-0.5 -2,-0.2 0.749 116.1 49.3 -75.7 -23.9 8.1 -2.0 -0.0 26 55 A T H < S- 0 0 99 -4,-0.8 2,-0.2 1,-0.3 -2,-0.2 0.915 115.9-106.3 -82.2 -45.9 9.2 -0.2 -3.1 27 56 A G < - 0 0 29 -4,-3.4 -1,-0.3 0, 0.0 -2,-0.1 -0.810 33.4 -59.4 143.7 176.3 11.4 2.4 -1.4 28 57 A E 0 0 180 -2,-0.2 -3,-0.0 -3,-0.1 0, 0.0 0.026 360.0 360.0 -74.7-172.5 11.8 6.0 -0.4 29 58 A K 0 0 261 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.953 360.0 360.0 -77.4 360.0 11.8 9.0 -2.7