==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 31-MAY-02 1LWM . COMPND 2 MOLECULE: NONHISTONE CHROMOSOMAL PROTEIN 6A; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR J.E.MASSE,B.WONG,Y.-M.YEN,F.H.-T.ALLAIN,R.C.JOHNSON,J.FEIGON . 93 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 8597.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 63 67.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 49 52.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 216 0, 0.0 2,-0.6 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 19.7 -20.1 10.5 9.1 2 2 A V - 0 0 120 1,-0.2 0, 0.0 2,-0.1 0, 0.0 -0.488 360.0 -14.8 -65.9 110.0 -16.7 10.8 7.5 3 3 A T - 0 0 92 -2,-0.6 -1,-0.2 1,-0.1 0, 0.0 0.950 68.3-138.7 58.2 94.0 -15.2 14.0 8.9 4 4 A P S S+ 0 0 133 0, 0.0 2,-0.8 0, 0.0 -1,-0.1 0.738 87.2 85.3 -52.1 -23.9 -18.0 16.0 10.5 5 5 A R + 0 0 216 2,-0.0 0, 0.0 1,-0.0 0, 0.0 -0.738 57.1 174.8 -87.1 108.0 -16.4 19.1 8.9 6 6 A E > - 0 0 114 -2,-0.8 3,-1.1 4,-0.0 2,-0.7 -0.844 28.8-137.1-118.0 94.6 -17.6 19.4 5.3 7 7 A P T 3 S- 0 0 85 0, 0.0 3,-0.4 0, 0.0 4,-0.3 -0.277 77.5 -44.8 -51.8 97.0 -16.3 22.6 3.6 8 8 A K T 3 S- 0 0 183 -2,-0.7 0, 0.0 1,-0.3 0, 0.0 0.896 112.7 -52.3 37.0 63.9 -19.5 23.7 1.8 9 9 A K S < S- 0 0 187 -3,-1.1 -1,-0.3 2,-0.1 -3,-0.0 0.897 115.5 -43.5 40.8 54.8 -20.2 20.2 0.5 10 10 A R - 0 0 164 -3,-0.4 2,-0.4 1,-0.2 -2,-0.1 0.892 65.6-162.9 57.7 105.1 -16.7 20.0 -0.9 11 11 A T + 0 0 110 -4,-0.3 2,-0.3 0, 0.0 -1,-0.2 -0.577 33.1 142.1-118.2 67.6 -15.7 23.2 -2.7 12 12 A T - 0 0 81 -2,-0.4 3,-0.2 1,-0.1 0, 0.0 -0.817 36.3-163.2-109.6 149.1 -12.7 22.1 -4.8 13 13 A R S S+ 0 0 242 -2,-0.3 2,-0.5 1,-0.2 -1,-0.1 0.907 85.0 17.3 -92.1 -57.7 -11.8 23.3 -8.3 14 14 A K + 0 0 166 1,-0.2 -1,-0.2 3,-0.0 0, 0.0 -0.829 64.2 160.0-122.7 92.6 -9.3 20.7 -9.5 15 15 A K + 0 0 126 -2,-0.5 2,-0.3 -3,-0.2 -1,-0.2 0.973 63.9 60.4 -73.6 -58.2 -9.4 17.5 -7.4 16 16 A K + 0 0 179 0, 0.0 -1,-0.0 0, 0.0 0, 0.0 -0.559 69.7 170.5 -75.9 132.3 -7.7 15.1 -9.9 17 17 A D - 0 0 85 -2,-0.3 -2,-0.0 1,-0.1 -3,-0.0 -0.938 31.4-100.6-139.8 161.5 -4.2 16.1 -10.9 18 18 A P S S+ 0 0 94 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.065 91.7 44.2 -69.4-174.9 -1.2 14.6 -12.8 19 19 A N S S+ 0 0 119 1,-0.2 -2,-0.0 68,-0.0 0, 0.0 0.904 77.5 150.5 37.0 81.2 1.9 13.0 -11.3 20 20 A A - 0 0 46 68,-0.0 -1,-0.2 67,-0.0 65,-0.1 -0.994 48.2-105.3-144.5 134.2 0.2 10.9 -8.7 21 21 A P - 0 0 38 0, 0.0 60,-0.1 0, 0.0 61,-0.1 -0.072 17.5-158.8 -52.8 154.0 1.1 7.5 -7.0 22 22 A K - 0 0 138 58,-0.0 59,-0.1 0, 0.0 58,-0.0 0.093 49.8 -96.3-123.5 19.4 -0.8 4.4 -8.0 23 23 A R - 0 0 188 58,-0.2 55,-0.0 55,-0.0 59,-0.0 0.862 42.0-115.4 64.3 107.9 -0.1 2.3 -4.9 24 24 A A - 0 0 23 54,-0.1 2,-0.3 1,-0.1 54,-0.1 -0.034 26.7-133.4 -63.8 173.1 2.9 -0.1 -5.4 25 25 A L - 0 0 32 49,-0.2 52,-0.2 48,-0.1 2,-0.2 -0.976 7.2-131.4-134.7 147.7 2.5 -3.9 -5.3 26 26 A S >> - 0 0 63 -2,-0.3 4,-1.8 1,-0.1 3,-0.9 -0.485 36.9 -98.9 -92.9 165.6 4.3 -6.7 -3.6 27 27 A A H 3> S+ 0 0 7 1,-0.3 4,-1.9 2,-0.2 5,-0.2 0.791 128.0 52.5 -51.7 -28.6 5.6 -9.9 -5.1 28 28 A Y H 3> S+ 0 0 90 2,-0.2 4,-1.5 1,-0.2 -1,-0.3 0.830 103.4 55.5 -77.3 -34.2 2.5 -11.5 -3.7 29 29 A M H <> S+ 0 0 80 -3,-0.9 4,-1.6 2,-0.2 -2,-0.2 0.851 111.4 44.9 -67.4 -34.4 0.2 -8.9 -5.3 30 30 A F H X S+ 0 0 25 -4,-1.8 4,-1.6 2,-0.2 5,-0.3 0.970 117.9 40.3 -73.0 -56.1 1.6 -9.7 -8.7 31 31 A F H X S+ 0 0 8 -4,-1.9 4,-1.5 1,-0.2 -2,-0.2 0.723 120.5 48.7 -65.3 -20.3 1.6 -13.5 -8.4 32 32 A A H X S+ 0 0 6 -4,-1.5 4,-1.5 2,-0.2 -1,-0.2 0.768 105.6 55.6 -89.0 -29.7 -1.8 -13.1 -6.7 33 33 A N H < S+ 0 0 78 -4,-1.6 4,-0.2 2,-0.2 -2,-0.2 0.807 119.1 33.3 -72.0 -30.1 -3.2 -10.8 -9.3 34 34 A E H >X S+ 0 0 113 -4,-1.6 4,-1.4 2,-0.2 3,-0.8 0.868 121.4 45.9 -91.2 -45.4 -2.5 -13.4 -12.0 35 35 A N H 3X S+ 0 0 17 -4,-1.5 4,-2.3 -5,-0.3 5,-0.3 0.802 104.2 65.1 -68.2 -28.2 -3.0 -16.6 -10.1 36 36 A R H 3X S+ 0 0 76 -4,-1.5 4,-1.4 1,-0.2 -1,-0.2 0.781 106.0 43.9 -64.6 -26.0 -6.2 -15.1 -8.6 37 37 A D H <> S+ 0 0 102 -3,-0.8 4,-1.6 -4,-0.2 -1,-0.2 0.796 108.6 56.6 -87.9 -31.8 -7.6 -15.1 -12.2 38 38 A I H X S+ 0 0 94 -4,-1.4 4,-1.3 2,-0.2 -2,-0.2 0.901 117.4 34.6 -65.7 -40.4 -6.3 -18.6 -13.0 39 39 A V H X S+ 0 0 22 -4,-2.3 4,-1.4 2,-0.2 -2,-0.2 0.887 117.8 51.8 -80.4 -41.5 -8.2 -20.1 -10.0 40 40 A R H < S+ 0 0 91 -4,-1.4 -2,-0.2 -5,-0.3 -3,-0.2 0.757 112.1 49.5 -66.2 -23.1 -11.2 -17.7 -10.3 41 41 A S H < S+ 0 0 82 -4,-1.6 -1,-0.2 2,-0.2 -2,-0.2 0.860 114.6 41.6 -82.5 -38.5 -11.4 -18.8 -13.9 42 42 A E H < S+ 0 0 160 -4,-1.3 -2,-0.2 1,-0.3 -1,-0.2 0.591 137.4 16.5 -83.3 -11.3 -11.2 -22.5 -13.2 43 43 A N >< + 0 0 54 -4,-1.4 3,-0.9 3,-0.1 -1,-0.3 -0.430 60.9 165.7-162.2 77.4 -13.6 -22.0 -10.2 44 44 A P T 3 S+ 0 0 99 0, 0.0 -4,-0.1 0, 0.0 -3,-0.1 0.574 73.5 76.0 -71.4 -8.9 -15.5 -18.7 -10.1 45 45 A D T 3 S+ 0 0 162 2,-0.1 2,-0.2 -3,-0.0 -5,-0.1 0.864 82.4 76.0 -70.3 -36.9 -17.7 -20.3 -7.4 46 46 A I S < S- 0 0 52 -3,-0.9 -3,-0.1 -7,-0.2 2,-0.0 -0.535 77.0-140.0 -78.8 141.6 -15.1 -19.9 -4.8 47 47 A T >> - 0 0 88 -2,-0.2 4,-2.2 1,-0.1 3,-1.9 -0.142 39.1 -81.3 -88.3-172.6 -14.5 -16.4 -3.3 48 48 A F H 3> S+ 0 0 104 1,-0.3 4,-1.4 2,-0.2 5,-0.5 0.671 120.2 79.4 -65.0 -15.6 -11.2 -14.7 -2.3 49 49 A G H 34 S+ 0 0 41 1,-0.2 -1,-0.3 2,-0.1 -3,-0.0 0.631 112.9 18.1 -67.9 -11.6 -11.4 -16.7 0.9 50 50 A Q H <> S+ 0 0 74 -3,-1.9 4,-1.2 3,-0.1 -2,-0.2 0.583 122.6 58.1-126.9 -32.4 -10.0 -19.6 -1.1 51 51 A V H X S+ 0 0 0 -4,-2.2 4,-1.8 2,-0.2 3,-0.4 0.949 109.8 44.4 -66.9 -49.4 -8.6 -18.0 -4.2 52 52 A G H X S+ 0 0 6 -4,-1.4 4,-1.3 1,-0.2 -1,-0.2 0.838 112.5 53.3 -64.5 -31.8 -6.2 -15.8 -2.3 53 53 A K H > S+ 0 0 136 -5,-0.5 4,-1.6 2,-0.2 -1,-0.2 0.762 106.1 54.4 -73.8 -24.4 -5.2 -18.8 -0.1 54 54 A K H X S+ 0 0 99 -4,-1.2 4,-1.8 -3,-0.4 -2,-0.2 0.888 110.1 44.5 -75.5 -39.5 -4.5 -20.8 -3.2 55 55 A L H X S+ 0 0 1 -4,-1.8 4,-1.9 1,-0.2 5,-0.2 0.755 112.9 53.9 -74.9 -24.2 -2.1 -18.2 -4.5 56 56 A G H X S+ 0 0 21 -4,-1.3 4,-1.8 -5,-0.2 -2,-0.2 0.853 111.4 42.8 -77.7 -35.4 -0.6 -17.9 -1.1 57 57 A E H X S+ 0 0 117 -4,-1.6 4,-1.4 2,-0.2 -2,-0.2 0.828 118.3 45.7 -78.5 -33.2 0.1 -21.6 -0.7 58 58 A K H < S+ 0 0 119 -4,-1.8 4,-0.3 2,-0.2 -2,-0.2 0.920 117.5 42.3 -75.0 -45.2 1.4 -21.9 -4.3 59 59 A W H >< S+ 0 0 26 -4,-1.9 3,-0.7 2,-0.2 -2,-0.2 0.923 113.7 51.8 -66.8 -45.8 3.6 -18.8 -4.1 60 60 A K H 3< S+ 0 0 150 -4,-1.8 -1,-0.2 1,-0.3 -2,-0.2 0.882 118.7 37.6 -58.7 -38.4 4.9 -19.6 -0.6 61 61 A A T 3< S+ 0 0 66 -4,-1.4 2,-0.6 -5,-0.1 -1,-0.3 0.457 92.0 116.8 -90.6 -2.9 5.8 -23.1 -1.8 62 62 A L S < S- 0 0 18 -3,-0.7 5,-0.2 -4,-0.3 -3,-0.1 -0.561 80.7-104.1 -71.5 113.1 6.9 -21.6 -5.2 63 63 A T >> - 0 0 74 -2,-0.6 4,-1.6 1,-0.2 3,-1.3 0.048 22.8-124.0 -35.1 139.1 10.7 -22.3 -5.5 64 64 A P H 3> S+ 0 0 86 0, 0.0 4,-1.4 0, 0.0 -1,-0.2 0.712 109.2 68.9 -62.8 -20.0 12.7 -19.1 -4.8 65 65 A E H 34 S+ 0 0 149 1,-0.2 -2,-0.1 2,-0.2 -3,-0.0 0.830 106.4 37.6 -68.4 -31.8 14.3 -19.6 -8.3 66 66 A E H <> S+ 0 0 108 -3,-1.3 4,-0.6 1,-0.1 -1,-0.2 0.772 114.0 55.1 -88.5 -30.2 10.9 -18.8 -9.9 67 67 A K H X S+ 0 0 56 -4,-1.6 4,-2.1 -5,-0.2 5,-0.5 0.730 83.6 89.7 -74.0 -22.7 10.0 -16.1 -7.4 68 68 A Q H X S+ 0 0 111 -4,-1.4 4,-1.9 1,-0.3 -1,-0.2 0.891 94.4 37.9 -38.0 -58.3 13.3 -14.3 -8.1 69 69 A P H > S+ 0 0 75 0, 0.0 4,-1.7 0, 0.0 -1,-0.3 0.843 114.2 58.3 -65.6 -35.1 11.7 -12.3 -10.9 70 70 A Y H >X S+ 0 0 87 -4,-0.6 4,-1.7 2,-0.2 3,-0.9 0.991 110.8 37.5 -58.7 -66.9 8.5 -11.9 -8.9 71 71 A E H 3X S+ 0 0 90 -4,-2.1 4,-1.6 1,-0.3 3,-0.2 0.895 114.9 57.1 -52.6 -43.2 9.9 -10.2 -5.9 72 72 A A H 3X S+ 0 0 58 -4,-1.9 4,-1.6 -5,-0.5 -1,-0.3 0.842 104.8 52.5 -58.0 -33.4 12.3 -8.2 -8.1 73 73 A K H X S+ 0 0 82 -4,-1.9 4,-1.6 2,-0.2 3,-0.6 0.953 112.4 43.8 -61.5 -52.0 4.5 14.9 -5.4 89 89 A N H 3X S+ 0 0 118 -4,-2.3 4,-1.7 1,-0.2 -1,-0.2 0.775 116.4 49.5 -64.5 -26.2 5.3 15.7 -1.8 90 90 A A H 3< S+ 0 0 65 -4,-1.4 -1,-0.2 -5,-0.2 -2,-0.2 0.655 110.1 50.6 -86.1 -17.8 8.5 17.4 -3.0 91 91 A T H << S+ 0 0 105 -4,-1.3 -2,-0.2 -3,-0.6 -1,-0.2 0.705 118.4 36.8 -90.5 -23.7 6.6 19.4 -5.5 92 92 A L H < 0 0 111 -4,-1.6 -2,-0.2 -5,-0.2 -3,-0.2 0.812 360.0 360.0 -95.1 -39.0 4.0 20.7 -3.0 93 93 A A < 0 0 141 -4,-1.7 -1,-0.1 -5,-0.3 -2,-0.1 -0.071 360.0 360.0 36.1 360.0 6.3 21.1 -0.0