==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-SEP-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 02-MAY-13 2M7X . COMPND 2 MOLECULE: NA(+)/H(+) ANTIPORTER; . SOURCE 2 ORGANISM_SCIENTIFIC: SCHIZOSACCHAROMYCES POMBE; . AUTHOR A.ULLAH,G.KEMP,B.LEE,C.ALVES,H.YOUNG,B.D.SYKES,L.FLIEGEL . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3176.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 125 A L 0 0 199 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 165.8 6.9 -11.5 -18.6 2 126 A F - 0 0 160 1,-0.1 4,-0.0 2,-0.0 0, 0.0 -0.556 360.0 -96.9 -95.6 162.6 7.9 -13.7 -15.6 3 127 A P > - 0 0 92 0, 0.0 3,-0.7 0, 0.0 4,-0.2 -0.095 28.5-113.7 -69.8 173.4 7.5 -17.5 -15.2 4 128 A Q T > S+ 0 0 180 1,-0.2 3,-0.7 2,-0.1 4,-0.3 0.739 114.0 63.7 -81.3 -24.1 4.6 -19.2 -13.4 5 129 A I T 3> S+ 0 0 112 1,-0.2 4,-2.0 2,-0.1 -1,-0.2 0.171 73.4 102.3 -85.0 19.3 6.9 -20.5 -10.8 6 130 A N H <> S+ 0 0 65 -3,-0.7 4,-2.8 2,-0.2 -1,-0.2 0.902 78.6 49.7 -68.2 -41.8 7.6 -16.9 -9.8 7 131 A F H <> S+ 0 0 149 -3,-0.7 4,-1.1 2,-0.2 -1,-0.1 0.978 117.3 38.1 -60.9 -58.2 5.3 -17.1 -6.7 8 132 A L H > S+ 0 0 123 -4,-0.3 4,-1.2 1,-0.2 -1,-0.2 0.852 116.5 55.1 -62.3 -34.4 6.8 -20.4 -5.4 9 133 A G H X S+ 0 0 35 -4,-2.0 4,-1.4 1,-0.2 3,-0.5 0.923 106.1 49.1 -65.0 -45.2 10.3 -19.2 -6.4 10 134 A S H X S+ 0 0 58 -4,-2.8 4,-3.3 1,-0.2 -1,-0.2 0.723 101.9 67.4 -66.9 -20.2 10.0 -15.9 -4.5 11 135 A L H X S+ 0 0 98 -4,-1.1 4,-1.6 2,-0.2 -1,-0.2 0.917 100.1 46.7 -66.1 -43.8 8.8 -18.0 -1.5 12 136 A L H X S+ 0 0 137 -4,-1.2 4,-0.7 -3,-0.5 -2,-0.2 0.922 118.5 41.5 -64.3 -44.7 12.3 -19.7 -1.2 13 137 A I H >X S+ 0 0 115 -4,-1.4 3,-1.4 1,-0.2 4,-1.1 0.953 113.2 51.5 -68.0 -51.0 14.1 -16.3 -1.4 14 138 A A H 3X S+ 0 0 35 -4,-3.3 4,-2.9 1,-0.3 -1,-0.2 0.809 96.3 73.4 -56.0 -29.4 11.6 -14.4 0.8 15 139 A G H 3X S+ 0 0 38 -4,-1.6 4,-2.1 1,-0.2 -1,-0.3 0.890 96.4 48.2 -52.0 -42.8 12.1 -17.2 3.3 16 140 A C H << S+ 0 0 102 -3,-1.4 -1,-0.2 -4,-0.7 -2,-0.2 0.904 111.1 49.9 -65.8 -41.9 15.6 -15.7 4.1 17 141 A I H < S+ 0 0 143 -4,-1.1 -2,-0.2 1,-0.2 -1,-0.2 0.886 110.6 51.6 -64.1 -39.3 14.2 -12.2 4.4 18 142 A T H < + 0 0 58 -4,-2.9 2,-1.3 1,-0.2 3,-0.2 0.992 66.5 167.7 -60.9 -64.5 11.5 -13.4 6.8 19 143 A S S < S+ 0 0 110 -4,-2.1 -1,-0.2 1,-0.2 -2,-0.1 -0.029 71.4 48.0 74.4 -36.8 13.7 -15.3 9.2 20 144 A T S S- 0 0 101 -2,-1.3 -1,-0.2 1,-0.1 -2,-0.1 0.633 106.5 -75.9 -97.6-107.9 10.7 -15.5 11.5 21 145 A D - 0 0 93 -3,-0.2 -1,-0.1 1,-0.2 5,-0.1 -0.981 55.8 -58.2-156.8 163.2 7.3 -16.6 10.3 22 146 A P > - 0 0 95 0, 0.0 4,-0.6 0, 0.0 3,-0.4 0.154 52.0-109.9 -38.4 160.8 4.2 -15.4 8.2 23 147 A V H > S+ 0 0 129 1,-0.2 4,-0.6 2,-0.2 3,-0.3 0.708 116.4 66.2 -71.2 -19.4 2.4 -12.2 9.4 24 148 A L H >> S+ 0 0 122 1,-0.2 4,-1.6 2,-0.2 3,-1.2 0.880 89.9 62.4 -69.1 -38.2 -0.5 -14.4 10.4 25 149 A S H 3> S+ 0 0 56 -3,-0.4 4,-2.0 1,-0.3 -1,-0.2 0.835 97.5 59.1 -55.9 -33.1 1.5 -16.1 13.1 26 150 A A H 3< S+ 0 0 73 -4,-0.6 -1,-0.3 -3,-0.3 -2,-0.2 0.824 102.0 54.0 -66.1 -30.9 1.8 -12.7 14.8 27 151 A L H << S+ 0 0 141 -3,-1.2 -1,-0.2 -4,-0.6 -2,-0.2 0.906 110.7 44.1 -69.9 -42.4 -2.0 -12.6 15.0 28 152 A I H < S- 0 0 136 -4,-1.6 -2,-0.2 0, 0.0 -1,-0.2 0.824 97.6-166.0 -71.3 -31.4 -2.2 -15.9 16.8 29 153 A V < 0 0 100 -4,-2.0 -3,-0.1 -5,-0.2 -2,-0.1 0.390 360.0 360.0 57.6 155.7 0.7 -15.0 19.1 30 154 A G 0 0 121 -4,-0.1 0, 0.0 0, 0.0 0, 0.0 0.625 360.0 360.0 -68.5 360.0 2.5 -17.6 21.2