==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 22-MAY-96 1MIC . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR Y.CHEN,A.TUCKER,B.A.WALLACE . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2534.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 73.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 184 0, 0.0 3,-0.1 0, 0.0 20,-0.1 0.000 360.0 360.0 360.0 42.1 14.6 2.2 -3.6 2 2 A G - 0 0 57 17,-0.2 2,-0.3 1,-0.1 19,-0.2 0.904 360.0 -89.1 -46.3 -93.7 13.5 3.1 0.0 3 3 A A E S+a 21 0A 26 17,-0.6 19,-1.6 3,-0.1 2,-0.6 -0.928 82.7 46.4-179.6 155.6 12.6 -0.3 1.4 4 4 A X E S-a 22 0A 74 -2,-0.3 15,-0.7 17,-0.2 14,-0.2 -0.889 96.4 -66.7 109.1-115.7 9.7 -2.8 1.8 5 5 A A E S-b 19 0B 47 17,-1.4 15,-0.2 1,-0.8 2,-0.2 -0.175 98.7 -18.2-176.0 65.3 7.6 -3.6 -1.3 6 6 A X E S-b 20 0B 44 13,-1.6 15,-1.6 17,-0.3 2,-1.0 -0.448 89.9 -69.8 112.9 169.6 5.5 -0.6 -2.4 7 7 A V E S-b 25 0B 37 17,-0.8 19,-1.0 15,-0.2 2,-0.4 -0.541 103.4 -21.1-102.5 77.1 4.5 2.6 -0.6 8 8 A X S S- 0 0 32 -2,-1.0 19,-0.2 17,-0.2 17,-0.2 -0.853 99.6 -51.9 136.6-107.9 2.0 1.4 2.1 9 9 A W S S- 0 0 108 -2,-0.4 19,-2.1 13,-0.2 2,-0.6 -0.444 93.7 -26.3-172.3 95.1 -0.1 -1.8 2.1 10 10 A X E S-cd 24 28B 97 13,-2.0 15,-1.6 17,-0.2 19,-0.2 -0.844 92.7 -70.5 101.4-122.0 -2.3 -3.1 -0.7 11 11 A W E S+cd 25 29B 110 17,-1.5 19,-1.6 -2,-0.6 2,-0.4 -0.445 94.8 0.2-178.8 97.0 -3.7 -0.4 -3.1 12 12 A X E S-c 26 0B 32 13,-2.0 15,-1.4 17,-0.3 2,-0.3 -0.971 93.7 -65.9 123.0-129.7 -6.4 2.1 -2.1 13 13 A W E S-c 27 0B 139 -2,-0.4 2,-0.8 13,-0.2 15,-0.3 -0.896 84.8 -29.7-165.1 132.1 -8.0 2.3 1.4 14 14 A X 0 0 95 13,-1.7 16,-0.1 -2,-0.3 15,-0.0 -0.399 360.0 360.0 60.3-103.7 -10.2 0.0 3.4 15 15 A W 0 0 204 -2,-0.8 15,-0.2 13,-0.2 -1,-0.1 -0.772 360.0 360.0-172.4 360.0 -12.2 -1.7 0.6 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 183 0, 0.0 3,-0.1 0, 0.0 -12,-0.1 0.000 360.0 360.0 360.0 26.5 13.8 -4.6 3.4 18 2 B G - 0 0 43 -14,-0.2 2,-0.3 -15,-0.2 -13,-0.3 0.891 360.0 -84.0 -46.7 -98.5 12.6 -5.0 -0.3 19 3 B A E S+b 5 0B 27 -15,-0.7 -13,-1.6 -16,-0.2 2,-0.6 -0.962 84.1 47.6-172.4 156.1 12.3 -1.5 -1.6 20 4 B X E S-b 6 0B 60 -2,-0.3 -17,-0.6 -15,-0.2 -13,-0.2 -0.911 95.8 -64.7 111.8-117.5 10.0 1.5 -1.9 21 5 B A E S-a 3 0A 44 -15,-1.6 2,-0.4 -2,-0.6 -17,-0.2 -0.156 98.4 -22.6-172.3 64.1 8.3 2.8 1.3 22 6 B X E S-a 4 0A 59 -19,-1.6 -17,-1.4 -15,-0.3 -15,-0.2 -0.983 94.2 -64.7 131.0-127.1 5.8 0.3 2.9 23 7 B V E S- 0 0 34 -2,-0.4 -13,-2.0 -19,-0.2 -17,-0.3 -0.157 96.5 -20.2-162.2 58.4 4.1 -2.5 1.0 24 8 B X E S- c 0 10B 30 -15,-0.3 -17,-0.8 -16,-0.1 2,-0.5 -0.951 93.5 -51.7 135.8-158.0 1.7 -1.2 -1.7 25 9 B W E S-bc 7 11B 114 -15,-1.6 -13,-2.0 -2,-0.3 2,-0.5 -0.559 104.0 -34.6-117.6 72.9 -0.1 2.1 -2.5 26 10 B X E S- c 0 12B 82 -19,-1.0 -3,-0.2 -2,-0.5 -13,-0.2 -0.954 90.4 -69.6 124.6-119.8 -2.0 3.1 0.7 27 11 B W E S+ c 0 13B 110 -15,-1.4 -13,-1.7 -2,-0.5 2,-0.5 -0.571 94.0 1.6 180.0 108.7 -3.6 0.5 3.0 28 12 B X E S-d 10 0B 39 -19,-2.1 -17,-1.5 -15,-0.3 2,-0.3 -0.919 95.9 -64.8 111.3-131.4 -6.6 -1.7 2.3 29 13 B W E S-d 11 0B 125 -2,-0.5 2,-0.4 -19,-0.2 -17,-0.3 -0.967 86.2 -21.3-160.3 142.0 -8.3 -1.5 -1.1 30 14 B X 0 0 92 -19,-1.6 -16,-0.1 -2,-0.3 0, 0.0 -0.398 360.0 360.0 59.8-113.2 -10.3 1.1 -3.1 31 15 B W 0 0 206 -2,-0.4 -17,-0.2 -19,-0.2 -1,-0.1 -0.910 360.0 360.0-164.3 360.0 -11.5 3.5 -0.5