==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METALLOTHIONEIN 14-MAY-90 2MRB . COMPND 2 MOLECULE: CD7 METALLOTHIONEIN-2A; . SOURCE 2 ORGANISM_SCIENTIFIC: ORYCTOLAGUS CUNICULUS; . AUTHOR W.BRAUN,A.ARSENIEV,P.SCHULTZE,E.WOERGOETTER,G.WAGNER, . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2775.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 227 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 101.9 1.5 0.0 0.0 2 2 A D + 0 0 72 1,-0.2 4,-0.1 2,-0.1 21,-0.1 -0.803 360.0 164.8 -95.8 99.3 3.0 0.4 3.4 3 3 A P S S- 0 0 91 0, 0.0 20,-0.3 0, 0.0 -1,-0.2 0.988 78.8 -30.6 -75.0 -71.1 6.4 1.9 2.9 4 4 A N S S- 0 0 95 1,-0.2 20,-4.5 18,-0.2 2,-0.2 0.658 129.9 -13.2-118.2 -39.4 7.5 3.1 6.3 5 5 A C - 0 0 38 17,-0.2 -1,-0.2 18,-0.2 20,-0.0 -0.802 45.7-175.8-170.3 124.0 4.1 4.0 7.9 6 6 A S + 0 0 69 -2,-0.2 3,-0.1 -3,-0.1 2,-0.1 -0.305 56.7 101.9-118.7 45.8 0.7 4.5 6.4 7 7 A C + 0 0 23 1,-0.1 -2,-0.1 7,-0.1 6,-0.0 -0.068 39.5 74.0-105.7-152.8 -1.1 5.6 9.5 8 8 A A + 0 0 82 1,-0.1 -1,-0.1 -2,-0.1 -3,-0.0 0.916 55.0 141.2 42.2 57.7 -2.2 9.0 10.7 9 8AA A - 0 0 54 3,-0.1 -1,-0.1 -3,-0.1 4,-0.1 0.587 55.3-133.7 -99.6 -17.1 -5.0 9.0 8.1 10 9 A A S S+ 0 0 96 2,-0.2 3,-0.1 1,-0.2 2,-0.1 0.878 85.0 26.0 60.9 106.5 -7.5 10.7 10.5 11 10 A G S S+ 0 0 80 1,-0.5 -1,-0.2 0, 0.0 -3,-0.0 -0.350 100.1 96.7 109.4 -49.3 -10.8 8.9 10.4 12 11 A D S S- 0 0 120 -2,-0.1 2,-0.7 1,-0.1 -1,-0.5 -0.182 78.4-117.3 -68.3 165.8 -9.6 5.5 9.3 13 12 A S - 0 0 115 -3,-0.1 -1,-0.1 -4,-0.1 2,-0.1 -0.866 29.6-161.3-112.5 97.0 -8.9 2.8 11.9 14 13 A C - 0 0 70 -2,-0.7 2,-0.7 1,-0.1 -7,-0.1 -0.372 16.1-131.3 -73.6 154.9 -5.2 1.8 11.9 15 14 A T + 0 0 98 1,-0.1 4,-0.3 4,-0.1 6,-0.1 -0.780 57.9 128.9-112.5 85.6 -4.1 -1.5 13.4 16 15 A C + 0 0 16 -2,-0.7 4,-0.2 2,-0.1 -1,-0.1 -0.069 60.6 73.4-124.2 28.3 -1.2 -0.7 15.7 17 16 A A S S+ 0 0 95 2,-0.2 3,-0.1 -3,-0.0 -1,-0.1 0.598 102.8 35.6-112.2 -24.0 -2.7 -2.5 18.7 18 17 A N S S- 0 0 132 1,-0.2 2,-0.3 0, 0.0 -2,-0.1 0.907 134.9 -23.2 -92.6 -67.6 -2.1 -6.1 17.5 19 18 A S - 0 0 94 -4,-0.3 -1,-0.2 0, 0.0 -2,-0.2 -0.858 61.5-136.0-155.1 113.9 1.2 -6.0 15.5 20 19 A C + 0 0 53 -2,-0.3 -4,-0.1 -4,-0.2 3,-0.0 -0.306 22.4 174.2 -66.7 152.7 2.8 -2.9 13.9 21 20 A T + 0 0 105 -6,-0.1 -1,-0.1 -17,-0.0 -5,-0.1 0.592 41.1 109.3-127.7 -39.6 4.2 -3.4 10.4 22 21 A C - 0 0 15 1,-0.2 3,-0.5 2,-0.1 -17,-0.2 -0.086 59.9-146.4 -43.5 140.0 5.2 0.1 9.4 23 22 A K S S+ 0 0 187 -20,-0.3 -18,-0.2 1,-0.2 -1,-0.2 0.630 98.7 27.4 -86.0 -16.7 9.0 0.3 9.2 24 23 A A S S+ 0 0 51 -20,-4.5 -1,-0.2 0, 0.0 -20,-0.1 -0.405 83.2 172.2-142.5 59.0 8.8 3.9 10.3 25 24 A C - 0 0 26 -3,-0.5 -20,-0.1 1,-0.1 -5,-0.0 -0.406 16.4-175.4 -70.7 147.2 5.6 4.3 12.3 26 25 A K + 0 0 160 -2,-0.1 -1,-0.1 3,-0.0 5,-0.1 0.132 38.9 129.9-128.0 14.2 5.0 7.6 14.1 27 26 A C > - 0 0 23 3,-0.3 3,-2.1 1,-0.1 -2,-0.0 -0.403 68.6-123.4 -71.5 148.8 1.8 6.6 15.9 28 27 A T T 3 S+ 0 0 128 1,-0.3 3,-0.3 -2,-0.1 -1,-0.1 0.558 112.9 65.4 -68.6 -7.3 1.7 7.3 19.6 29 28 A S T 3 S+ 0 0 88 1,-0.3 -1,-0.3 2,-0.1 2,-0.2 0.518 114.2 27.5 -90.4 -8.4 1.0 3.6 19.9 30 29 A C < 0 0 34 -3,-2.1 -1,-0.3 1,-0.1 -3,-0.3 -0.673 360.0 360.0-156.5 92.5 4.4 2.8 18.6 31 30 A K 0 0 238 -3,-0.3 -3,-0.1 -2,-0.2 -2,-0.1 0.770 360.0 360.0-108.9 360.0 7.2 5.4 19.2