==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSFERASE 05-NOV-02 1N5G . COMPND 2 MOLECULE: 38-MER OF DNA POLYMERASE ALPHA CATALYTIC SUBUNIT; . SOURCE 2 SYNTHETIC: YES; . AUTHOR F.EVANICS,L.MAURMANN,W.W.YANG,R.N.BOSE . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3255.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 65.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 15.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 36.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A W > 0 0 181 0, 0.0 4,-2.5 0, 0.0 26,-0.0 0.000 360.0 360.0 360.0 -25.9 -3.2 -2.4 -10.3 2 2 A L H > + 0 0 120 2,-0.2 4,-1.3 1,-0.2 0, 0.0 0.916 360.0 53.1 -54.3 -44.5 -3.7 -6.0 -8.8 3 3 A I H 4>S+ 0 0 135 3,-0.1 5,-1.6 2,-0.1 6,-0.3 0.880 110.1 51.1 -54.9 -36.7 0.2 -6.3 -9.0 4 4 A C H 4>S+ 0 0 29 3,-0.2 5,-3.1 4,-0.2 6,-0.4 0.999 110.2 45.1 -61.2 -67.5 0.2 -2.9 -7.1 5 5 A E H <>S+ 0 0 23 -4,-2.5 5,-0.6 3,-0.2 4,-0.2 0.887 121.4 31.4 -51.2 -62.9 -2.3 -3.9 -4.2 6 6 A E T X5S+ 0 0 80 -4,-1.3 4,-0.8 3,-0.2 5,-0.2 0.970 132.6 19.2 -68.5 -68.2 -0.9 -7.4 -3.2 7 7 A P H >5S+ 0 0 58 0, 0.0 4,-1.3 0, 0.0 -3,-0.2 0.983 134.5 28.6 -71.2 -57.9 3.0 -7.4 -3.8 8 8 A T H >< S+ 0 0 28 -4,-1.2 3,-0.6 2,-0.2 -2,-0.2 0.820 95.7 61.8 -60.2 -28.2 3.0 -1.3 4.6 14 14 A R H 3< S+ 0 0 133 -4,-0.8 4,-0.3 1,-0.2 -2,-0.2 0.766 98.4 55.1 -65.2 -24.6 6.8 -1.7 5.1 15 15 A H H >X S+ 0 0 69 -4,-0.5 4,-3.4 -3,-0.4 3,-1.0 0.718 93.3 73.7 -67.3 -27.6 6.7 2.2 4.8 16 16 A L T << S+ 0 0 85 -3,-0.6 -2,-0.2 -4,-0.5 -1,-0.1 0.892 84.3 61.8 -65.5 -36.8 4.1 2.1 7.8 17 17 A P T 34 S+ 0 0 122 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.821 119.9 30.0 -48.2 -32.3 6.9 1.2 10.4 18 18 A L T <4 S- 0 0 94 -3,-1.0 -2,-0.2 -4,-0.3 -3,-0.1 0.839 90.4-167.4 -87.9 -46.0 8.3 4.8 9.3 19 19 A Q < + 0 0 107 -4,-3.4 3,-0.5 2,-0.1 -3,-0.1 0.532 53.9 108.0 66.8 19.1 4.8 6.4 8.4 20 20 A F S S+ 0 0 155 -5,-0.3 3,-0.5 1,-0.2 2,-0.3 0.852 80.8 53.5 -83.3 -36.0 6.0 9.7 6.5 21 21 A S S S+ 0 0 33 -6,-0.2 -1,-0.2 1,-0.2 -6,-0.1 -0.184 73.0 120.3 -86.3 45.5 4.8 8.1 3.1 22 22 A R S S+ 0 0 187 -3,-0.5 -1,-0.2 -2,-0.3 -2,-0.1 0.903 83.4 37.1 -65.8 -46.1 1.2 7.5 4.6 23 23 A T S S+ 0 0 119 -3,-0.5 -2,-0.1 -4,-0.1 -1,-0.1 0.921 92.0 178.3 -67.2 -54.4 -0.3 9.8 1.9 24 24 A G > - 0 0 8 -4,-0.3 2,-2.4 1,-0.2 3,-0.7 0.905 29.3-134.7 53.9 78.2 2.2 8.5 -0.8 25 25 A P T 3 S+ 0 0 137 0, 0.0 -1,-0.2 0, 0.0 -2,-0.0 -0.249 79.3 89.2 -68.3 69.4 1.5 10.1 -4.3 26 26 A L T 3 S+ 0 0 131 -2,-2.4 -2,-0.1 1,-0.3 0, 0.0 0.683 87.6 14.2-126.4 -52.4 1.7 6.9 -6.5 27 27 A C S X S- 0 0 35 -3,-0.7 2,-1.0 -23,-0.0 3,-0.6 -0.993 79.2-102.5-137.0 144.1 -1.8 5.1 -6.8 28 28 A P T 3 S- 0 0 133 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.480 91.8 -38.5 -76.1 98.6 -5.5 6.2 -6.0 29 29 A A T 3 S+ 0 0 63 -2,-1.0 4,-0.4 1,-0.1 3,-0.1 0.868 91.2 144.2 56.3 47.5 -6.5 4.6 -2.6 30 30 A C <> + 0 0 7 -3,-0.6 4,-0.8 1,-0.2 -21,-0.1 0.577 51.2 69.5 -99.6 -10.5 -4.7 1.2 -3.3 31 31 A M H > S+ 0 0 59 -4,-0.2 4,-0.8 2,-0.2 3,-0.2 0.864 95.6 56.6 -74.1 -37.8 -3.3 0.1 0.3 32 32 A K H >> S+ 0 0 151 1,-0.2 4,-0.8 2,-0.2 3,-0.5 0.856 100.0 59.6 -58.6 -36.9 -6.9 -0.6 1.7 33 33 A A H >4 S+ 0 0 4 -4,-0.4 3,-0.8 2,-0.2 -1,-0.2 0.894 95.6 61.5 -56.1 -41.8 -7.4 -3.1 -1.3 34 34 A T H 3X S+ 0 0 2 -4,-0.8 4,-2.6 1,-0.2 -1,-0.2 0.817 101.7 54.7 -49.4 -36.7 -4.3 -5.2 0.1 35 35 A L H << S+ 0 0 74 -4,-0.8 -1,-0.2 -3,-0.5 -2,-0.2 0.705 88.5 72.2 -72.6 -26.0 -6.6 -5.6 3.2 36 36 A Q T << S+ 0 0 163 -3,-0.8 -2,-0.2 -4,-0.8 -1,-0.2 0.953 115.0 29.2 -49.8 -45.5 -9.5 -7.1 1.1 37 37 A P T 4 0 0 77 0, 0.0 -2,-0.2 0, 0.0 -1,-0.1 0.929 360.0 360.0 -73.0 -49.0 -6.9 -10.1 1.0 38 38 A E < 0 0 139 -4,-2.6 -3,-0.2 -5,-0.1 -2,-0.2 0.670 360.0 360.0 -74.9 360.0 -5.1 -9.4 4.5