==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 25-JAN-03 1NRU . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR L.E.TOWNSLEY,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2669.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 86.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 91 0, 0.0 20,-2.8 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 127.0 4.2 -1.8 -1.2 2 2 A G E -aB 8 20A 15 5,-2.4 7,-2.3 18,-0.2 2,-0.4 -0.990 360.0 -17.9 147.4-152.4 2.7 -1.7 2.3 3 3 A A E S+aB 9 19A 30 16,-2.4 16,-2.4 -2,-0.3 2,-0.4 -0.827 104.6 35.1 -95.5 130.7 -0.5 -2.2 4.4 4 4 A X E S-aB 10 18A 74 5,-2.5 7,-2.6 -2,-0.4 2,-0.4 -0.985 112.9 -16.1 131.7-121.9 -3.9 -2.2 2.4 5 5 A A E S+a 11 0A 21 12,-2.8 2,-0.3 -2,-0.4 7,-0.2 -0.991 107.4 43.4-127.7 124.2 -4.2 -3.7 -1.1 6 6 A X E S-a 12 0A 54 5,-2.1 7,-2.4 -2,-0.4 2,-0.4 -0.970 107.7 -12.5 147.1-134.6 -1.1 -4.4 -3.4 7 7 A V E S+a 13 0A 51 -2,-0.3 -5,-2.4 5,-0.2 2,-0.4 -0.868 114.4 32.3 -98.1 136.7 2.2 -6.1 -2.2 8 8 A X E S-a 2 0A 41 5,-2.3 7,-2.5 -2,-0.4 2,-0.4 -0.922 108.2 -3.3 130.2-107.5 2.7 -6.4 1.6 9 9 A W E S+a 3 0A 159 -7,-2.3 -5,-2.5 -2,-0.4 2,-0.4 -0.985 107.5 20.2-134.3 123.5 -0.2 -6.9 4.1 10 10 A X E S+a 4 0A 68 5,-2.0 2,-0.3 -2,-0.4 -5,-0.2 -0.901 111.1 5.8 134.7 -98.3 -4.0 -7.1 3.6 11 11 A W E S+a 5 0A 159 -7,-2.6 -5,-2.1 -2,-0.4 2,-0.8 -0.824 110.4 24.8-110.7 157.1 -5.2 -7.9 0.1 12 12 A X E S-a 6 0A 108 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.818 106.8 -0.1 102.2 -96.2 -3.2 -8.8 -3.1 13 13 A W E S+a 7 0A 151 -7,-2.4 -5,-2.3 -2,-0.8 2,-0.8 -0.983 105.2 12.2-143.7 144.5 0.2 -10.4 -2.4 14 14 A X E a 8 0A 111 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.811 360.0 360.0 99.5 -89.0 2.6 -11.6 0.5 15 15 A W 0 0 202 -7,-2.5 -5,-2.0 -2,-0.8 -2,-0.1 -0.729 360.0 360.0-137.2 360.0 0.6 -11.5 3.8 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 92 0, 0.0 -12,-2.8 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 126.9 -3.8 1.5 -2.4 18 2 B G E -Bc 4 24A 16 5,-2.4 7,-2.3 -14,-0.2 2,-0.4 -0.990 360.0 -17.9 147.4-152.4 -3.1 2.1 1.3 19 3 B A E S+Bc 3 25A 31 -16,-2.4 -16,-2.4 -2,-0.3 2,-0.4 -0.827 104.6 35.1 -95.5 130.7 -0.4 3.0 3.8 20 4 B X E S-Bc 2 26A 75 5,-2.5 7,-2.6 -2,-0.4 2,-0.4 -0.985 112.9 -16.0 131.7-121.9 3.3 2.7 2.7 21 5 B A E S+ c 0 27A 22 -20,-2.8 2,-0.3 -2,-0.4 7,-0.2 -0.991 107.4 43.3-127.6 124.2 4.4 3.5 -1.0 22 6 B X E S- c 0 28A 53 5,-2.1 7,-2.4 -2,-0.4 2,-0.4 -0.970 107.7 -12.4 147.1-134.6 1.9 3.7 -3.9 23 7 B V E S+ c 0 29A 51 -2,-0.3 -5,-2.4 5,-0.2 2,-0.4 -0.867 114.4 32.3 -98.2 136.7 -1.5 5.5 -3.8 24 8 B X E S-cc 18 30A 41 5,-2.3 7,-2.4 -2,-0.4 2,-0.4 -0.922 108.2 -3.2 130.2-107.5 -2.9 6.5 -0.4 25 9 B W E S+c 19 0A 160 -7,-2.3 -5,-2.5 -2,-0.4 2,-0.4 -0.985 107.5 20.2-134.3 123.5 -0.6 7.6 2.5 26 10 B X E S+c 20 0A 67 5,-2.0 2,-0.3 -2,-0.4 -5,-0.2 -0.900 111.1 5.7 134.7 -98.5 3.3 7.8 2.9 27 11 B W E S+c 21 0A 158 -7,-2.6 -5,-2.1 -2,-0.4 2,-0.8 -0.825 110.4 24.9-110.6 157.1 5.2 7.8 -0.5 28 12 B X E S-c 22 0A 107 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.818 106.8 -0.1 102.2 -96.2 4.0 8.0 -4.1 29 13 B W E S+c 23 0A 152 -7,-2.4 -5,-2.3 -2,-0.8 2,-0.8 -0.983 105.2 12.3-143.6 144.5 0.5 9.7 -4.5 30 14 B X E c 24 0A 110 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.812 360.0 360.0 99.5 -89.0 -2.3 11.4 -2.5 31 15 B W 0 0 199 -7,-2.4 -5,-2.0 -2,-0.8 -2,-0.1 -0.730 360.0 360.0-137.2 360.0 -1.1 12.0 1.1