==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 27-NOV-06 2NZZ . COMPND 2 MOLECULE: PENETRATIN CONJUGATED GAS (374-394) PEPTIDE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.M.D'URSI,P.ROVERO,S.ALBRIZIO,C.ESPSITO,G.D'ERRICO, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4413.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 51.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 18.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 260 0, 0.0 2,-1.0 0, 0.0 3,-0.2 0.000 360.0 360.0 360.0 36.1 4.9 -7.3 2.2 2 2 A Q > + 0 0 150 1,-0.2 3,-0.6 2,-0.1 0, 0.0 -0.610 360.0 136.8-100.8 71.0 8.6 -6.6 2.9 3 3 A I T 3> + 0 0 103 -2,-1.0 4,-1.2 1,-0.2 3,-0.5 0.360 62.5 72.6 -94.1 2.6 10.1 -9.2 0.6 4 4 A K T 34 S+ 0 0 94 1,-0.2 -1,-0.2 -3,-0.2 4,-0.2 0.221 71.1 88.1 -98.8 11.2 12.6 -6.5 -0.5 5 5 A I T <4 S+ 0 0 76 -3,-0.6 -1,-0.2 2,-0.1 -2,-0.1 0.556 111.5 12.0 -83.6 -9.9 14.4 -6.9 2.8 6 6 A W T >4 S+ 0 0 186 -3,-0.5 3,-1.6 2,-0.0 -2,-0.2 0.562 127.7 54.3-129.9 -47.8 16.5 -9.6 1.3 7 7 A F T 3< S+ 0 0 164 -4,-1.2 -3,-0.2 1,-0.3 -2,-0.1 0.525 116.6 44.4 -69.7 -5.0 15.8 -9.5 -2.4 8 8 A Q T 3 S+ 0 0 76 -4,-0.2 2,-0.7 -5,-0.0 -1,-0.3 -0.105 85.2 110.2-129.3 32.8 16.9 -5.9 -2.1 9 9 A N < + 0 0 76 -3,-1.6 -4,-0.1 1,-0.1 -1,-0.0 -0.885 51.1 73.5-115.0 98.7 19.9 -6.3 0.1 10 10 A R S >> S+ 0 0 125 -2,-0.7 3,-1.7 -3,-0.0 4,-0.5 0.220 74.9 72.2-169.0 -36.7 23.1 -5.5 -1.9 11 11 A R H 3>>S+ 0 0 114 1,-0.3 4,-0.7 -3,-0.2 5,-0.6 0.721 91.0 66.5 -66.1 -21.6 23.3 -1.8 -2.4 12 12 A M H 345S+ 0 0 101 1,-0.2 -1,-0.3 2,-0.2 -3,-0.0 0.299 87.3 73.1 -82.0 9.3 24.1 -1.6 1.3 13 13 A K H <45S+ 0 0 166 -3,-1.7 -1,-0.2 1,-0.1 -2,-0.2 0.902 108.9 25.5 -86.7 -50.0 27.4 -3.4 0.5 14 14 A W H <5S- 0 0 123 -4,-0.5 -2,-0.2 -3,-0.3 -3,-0.1 0.494 93.7-153.6 -90.1 -6.8 29.2 -0.6 -1.2 15 15 A K T <5 + 0 0 121 -4,-0.7 -3,-0.2 -5,-0.2 -4,-0.1 0.846 67.0 98.7 29.2 68.4 27.0 1.9 0.7 16 16 A K S > S+ 0 0 137 -6,-0.3 3,-3.1 3,-0.0 4,-1.3 0.380 92.7 71.5-149.7 -45.6 24.3 4.2 -4.1 18 18 A V H 3> S+ 0 0 26 -7,-0.5 4,-4.3 1,-0.3 5,-0.4 0.891 93.6 62.7 -47.4 -45.8 21.3 3.8 -1.8 19 19 A F H 34 S+ 0 0 119 1,-0.2 -1,-0.3 2,-0.2 4,-0.2 0.718 102.5 53.6 -53.3 -21.4 21.8 7.4 -0.7 20 20 A N H X4 S+ 0 0 118 -3,-3.1 3,-0.6 2,-0.2 -1,-0.2 0.949 115.3 34.6 -78.2 -54.5 21.0 8.1 -4.4 21 21 A D H 3X S+ 0 0 42 -4,-1.3 6,-0.7 1,-0.3 4,-0.5 0.909 112.8 60.4 -66.0 -43.7 17.8 6.3 -4.6 22 22 A A T 3< S+ 0 0 55 -4,-4.3 2,-1.1 1,-0.3 -1,-0.3 0.712 91.6 75.1 -56.3 -19.4 16.9 7.2 -1.1 23 23 A R T <4 S+ 0 0 219 -3,-0.6 -1,-0.3 -5,-0.4 -2,-0.1 -0.385 91.3 55.1 -91.7 55.0 17.1 10.7 -2.4 24 24 A D T 4 S- 0 0 94 -2,-1.1 -2,-0.1 -3,-0.2 -1,-0.1 0.317 121.5 -56.4-142.0 -77.0 13.8 10.5 -4.3 25 25 A I S < S- 0 0 107 -4,-0.5 -3,-0.1 0, 0.0 4,-0.0 0.393 110.2 -24.9-143.5 -60.7 10.7 9.5 -2.3 26 26 A I S S- 0 0 96 -5,-0.2 3,-0.3 -3,-0.0 -4,-0.2 -0.004 84.9-100.1-155.5 31.2 11.2 6.2 -0.5 27 27 A Q S S+ 0 0 43 -6,-0.7 -5,-0.2 1,-0.2 -6,-0.1 0.806 116.6 34.8 48.0 32.5 13.8 4.4 -2.5 28 28 A R S > S+ 0 0 151 -7,-0.2 3,-4.7 3,-0.1 -1,-0.2 -0.116 105.2 52.0-165.4 -86.9 10.8 2.6 -4.0 29 29 A M T 3 S+ 0 0 122 1,-0.3 -2,-0.1 -3,-0.3 0, 0.0 0.639 99.9 76.5 -45.0 -13.3 7.5 4.2 -4.5 30 30 A H T 3 S+ 0 0 47 -9,-0.1 -1,-0.3 2,-0.0 -8,-0.0 0.779 90.2 64.4 -69.9 -27.5 9.6 6.8 -6.3 31 31 A L < - 0 0 88 -3,-4.7 -3,-0.1 1,-0.1 -4,-0.0 0.088 58.9-171.0 -79.2-163.7 9.9 4.3 -9.2 32 32 A R > + 0 0 145 3,-0.1 3,-3.1 0, 0.0 -3,-0.1 0.206 37.5 134.5-179.9 20.9 7.0 3.2 -11.4 33 33 A Q T 3 + 0 0 126 1,-0.3 4,-0.2 3,-0.1 -2,-0.0 0.638 68.4 75.0 -57.6 -12.9 8.5 0.4 -13.5 34 34 A Y T 3 S+ 0 0 144 2,-0.1 -1,-0.3 3,-0.0 3,-0.2 0.581 78.7 98.1 -75.6 -10.7 5.3 -1.4 -12.6 35 35 A E S < S+ 0 0 102 -3,-3.1 2,-0.6 1,-0.2 -3,-0.1 -0.377 79.0 25.6 -77.0 157.5 3.5 0.9 -15.1 36 36 A L 0 0 166 1,-0.2 -1,-0.2 -2,-0.1 -2,-0.1 -0.118 360.0 360.0 82.3 -38.5 2.7 -0.2 -18.6 37 37 A L 0 0 182 -2,-0.6 -1,-0.2 -4,-0.2 -3,-0.0 -0.286 360.0 360.0 -51.2 360.0 2.7 -3.8 -17.3