==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 06-MAY-03 1P8B . COMPND 2 MOLECULE: PEA ALBUMIN 1, SUBUNIT B; . SOURCE 2 ORGANISM_SCIENTIFIC: PISUM SATIVUM; . AUTHOR L.JOUVENSAL,L.QUILLIEN,E.FERRASSON,Y.RAHBE,J.GUEGUEN, . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2696.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 45.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 154 0, 0.0 2,-0.2 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 133.4 -9.4 -7.3 -9.8 2 2 A S - 0 0 106 1,-0.1 2,-0.2 32,-0.0 18,-0.0 -0.438 360.0-111.4 -66.5 130.4 -8.8 -7.7 -6.1 3 3 A a + 0 0 23 -2,-0.2 31,-1.1 16,-0.1 2,-0.2 -0.448 56.3 139.4 -67.3 132.4 -6.3 -5.2 -4.8 4 4 A N E +A 33 0A 134 29,-0.2 2,-0.3 -2,-0.2 29,-0.2 -0.843 22.2 74.3-173.5 134.4 -3.0 -6.7 -3.7 5 5 A G E S-A 32 0A 28 27,-1.1 27,-1.2 -2,-0.2 2,-0.4 -0.989 75.4 -46.0 158.7-151.1 0.7 -5.8 -4.0 6 6 A V E +A 31 0A 98 25,-0.3 2,-0.3 -2,-0.3 25,-0.3 -0.933 51.0 168.0-120.0 141.1 3.2 -3.4 -2.5 7 7 A b E -A 30 0A 3 23,-1.0 23,-1.9 -2,-0.4 -2,-0.0 -0.997 37.5-113.1-150.1 150.3 2.7 0.4 -2.0 8 8 A S > - 0 0 31 -2,-0.3 3,-1.8 21,-0.2 21,-0.2 -0.685 26.0-133.9 -83.3 132.7 4.4 3.3 -0.2 9 9 A P T 3 S+ 0 0 45 0, 0.0 -1,-0.1 0, 0.0 13,-0.1 0.633 107.9 58.8 -62.1 -11.4 2.2 4.5 2.6 10 10 A F T 3 S+ 0 0 151 18,-0.2 2,-0.3 3,-0.0 19,-0.0 0.668 84.9 98.6 -89.2 -21.1 2.9 8.0 1.3 11 11 A E < - 0 0 101 -3,-1.8 11,-0.1 2,-0.0 -4,-0.0 -0.518 67.5-140.8 -72.5 131.4 1.4 7.2 -2.1 12 12 A M S S+ 0 0 147 1,-0.4 6,-0.1 -2,-0.3 3,-0.0 -0.950 90.2 21.4-143.2 118.7 -2.1 8.3 -2.7 13 13 A P S > S- 0 0 53 0, 0.0 3,-1.1 0, 0.0 -1,-0.4 0.469 97.3-143.3 -83.7 143.1 -3.9 6.6 -4.1 14 14 A P G > S+ 0 0 8 0, 0.0 3,-0.8 0, 0.0 6,-0.3 -0.410 81.5 9.6 -69.3 140.9 -1.9 3.5 -3.4 15 15 A c G 3 S- 0 0 62 1,-0.2 -11,-0.1 -9,-0.2 3,-0.1 0.782 129.7 -70.6 59.2 30.6 -1.7 0.8 -6.2 16 16 A G G < S+ 0 0 71 -3,-1.1 2,-0.3 1,-0.1 -1,-0.2 0.882 113.9 91.0 56.5 44.5 -3.3 3.3 -8.6 17 17 A T < - 0 0 50 -3,-0.8 3,-0.4 1,-0.1 -1,-0.1 -0.887 59.6-155.3-168.7 134.0 -6.7 3.2 -6.9 18 18 A S S S+ 0 0 88 -2,-0.3 -1,-0.1 1,-0.2 -3,-0.1 0.526 93.0 73.6 -86.7 -7.6 -8.6 5.0 -4.1 19 19 A A S S+ 0 0 82 -6,-0.0 -1,-0.2 2,-0.0 2,-0.1 0.725 95.0 59.4 -76.4 -23.4 -10.8 1.9 -3.6 20 20 A a S S- 0 0 11 -3,-0.4 2,-0.3 -6,-0.3 14,-0.2 -0.429 75.6-138.1 -98.2 176.7 -7.9 0.1 -1.9 21 21 A R E -B 33 0A 132 12,-1.5 12,-2.6 -2,-0.1 2,-0.5 -0.992 12.4-127.2-140.0 144.0 -5.8 1.0 1.1 22 22 A b E -B 32 0A 18 -2,-0.3 10,-0.2 10,-0.2 -16,-0.1 -0.815 14.7-144.9 -96.0 125.9 -2.1 0.8 1.8 23 23 A I E -B 31 0A 21 8,-2.8 2,-2.5 -2,-0.5 8,-1.7 -0.795 13.7-138.9 -90.4 114.8 -0.9 -1.1 4.9 24 24 A P + 0 0 85 0, 0.0 2,-1.1 0, 0.0 6,-0.2 -0.338 42.2 154.5 -73.6 64.1 2.2 0.7 6.3 25 25 A V + 0 0 89 -2,-2.5 2,-0.3 6,-0.1 5,-0.1 -0.209 66.3 33.0 -84.3 44.8 4.2 -2.5 7.1 26 26 A G S S- 0 0 32 -2,-1.1 5,-0.1 1,-0.1 0, 0.0 -0.931 93.9 -95.3 176.6 164.2 7.3 -0.5 6.8 27 27 A L S S- 0 0 166 -2,-0.3 -1,-0.1 1,-0.2 3,-0.1 0.941 122.0 -3.8 -61.5 -48.6 8.9 2.9 7.3 28 28 A V S S+ 0 0 96 -3,-0.1 2,-0.3 -20,-0.1 -1,-0.2 0.050 130.6 64.4-133.6 24.3 8.3 3.9 3.7 29 29 A I + 0 0 89 -21,-0.2 -21,-0.2 -20,-0.1 2,-0.2 -0.998 48.6 144.4-150.1 145.2 6.9 0.7 2.3 30 30 A G E -A 7 0A 3 -23,-1.9 -23,-1.0 -2,-0.3 2,-0.4 -0.679 41.4 -87.3-151.8-153.5 3.8 -1.4 2.8 31 31 A Y E -AB 6 23A 74 -8,-1.7 -8,-2.8 -25,-0.3 2,-0.4 -0.995 29.7-114.9-139.4 143.6 1.4 -3.6 0.9 32 32 A c E +AB 5 22A 0 -27,-1.2 -27,-1.1 -2,-0.4 2,-0.4 -0.599 38.8 174.6 -75.7 127.5 -1.8 -2.9 -1.0 33 33 A R E -AB 4 21A 103 -12,-2.6 -12,-1.5 -2,-0.4 -29,-0.2 -0.992 28.1-127.3-140.5 128.9 -4.8 -4.5 0.6 34 34 A N > - 0 0 37 -31,-1.1 2,-0.6 -2,-0.4 3,-0.5 -0.534 16.8-131.2 -75.4 136.2 -8.4 -4.3 -0.4 35 35 A P T 3 S+ 0 0 81 0, 0.0 -1,-0.1 0, 0.0 -15,-0.1 0.001 98.3 75.3 -76.2 32.6 -10.9 -3.3 2.4 36 36 A S T 3 0 0 106 -2,-0.6 -2,-0.1 0, 0.0 -16,-0.0 -0.176 360.0 360.0-135.8 38.5 -13.0 -6.2 1.3 37 37 A G < 0 0 118 -3,-0.5 -4,-0.0 -4,-0.0 0, 0.0 -0.888 360.0 360.0 167.1 360.0 -11.1 -9.1 2.7