==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 20-APR-07 2PM1 . COMPND 2 MOLECULE: NEUTROPHIL DEFENSIN 1 (HNP-1) (HP-1) (HP1) . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR J.LUBKOWSKI,M.PAZGIER,W.LU . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2336.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 36.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 110 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 148.5 19.9 -4.5 7.6 2 2 A a - 0 0 59 28,-0.2 2,-0.3 11,-0.0 28,-0.2 -0.811 360.0-158.7-120.9 170.3 18.5 -6.2 4.4 3 3 A Y E -A 29 0A 99 26,-2.5 26,-2.9 -2,-0.3 2,-0.5 -0.975 22.7-127.0-147.6 154.0 17.6 -9.8 3.9 4 4 A b E +A 28 0A 57 -2,-0.3 2,-0.4 24,-0.2 24,-0.2 -0.945 44.1 178.9-102.4 126.2 17.0 -12.5 1.4 5 5 A R E -A 27 0A 56 22,-2.5 22,-2.9 -2,-0.5 14,-0.1 -0.947 21.8-125.5-133.3 144.9 13.6 -14.0 2.0 6 6 A I S S+ 0 0 96 -2,-0.4 20,-0.1 20,-0.2 -2,-0.0 -0.993 91.6 5.5-130.0 133.3 11.2 -16.7 0.7 7 7 A P S S- 0 0 127 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.984 126.2 -45.6 -85.0 -17.6 8.4 -16.3 -0.1 8 8 A A - 0 0 51 19,-0.1 -2,-0.1 -4,-0.1 21,-0.1 -0.955 66.2 -61.7-163.3 170.2 8.4 -12.5 0.4 9 9 A c - 0 0 31 -2,-0.3 2,-0.1 -4,-0.1 3,-0.1 -0.351 51.9-133.9 -62.8 153.5 9.4 -9.5 2.6 10 10 A I > - 0 0 106 1,-0.2 3,-1.9 4,-0.1 -1,-0.1 -0.309 48.7 -36.5-103.1-172.8 7.7 -9.4 6.0 11 11 A A T 3 S+ 0 0 102 1,-0.3 -1,-0.2 -2,-0.1 3,-0.1 -0.154 127.5 8.7 -57.3 130.6 6.1 -6.5 7.8 12 12 A G T 3 S+ 0 0 82 1,-0.3 2,-0.3 -3,-0.1 -1,-0.3 0.469 105.7 115.4 82.5 -0.3 7.5 -3.1 7.4 13 13 A E < - 0 0 32 -3,-1.9 -1,-0.3 16,-0.0 2,-0.3 -0.777 47.5-160.6-103.8 150.4 9.8 -4.4 4.7 14 14 A X - 0 0 91 16,-3.0 16,-2.4 -2,-0.3 2,-0.3 -0.916 23.7-109.4-124.5 156.1 9.9 -3.5 1.0 15 15 A X E +B 29 0A 95 -2,-0.3 14,-0.2 14,-0.2 3,-0.1 -0.659 28.2 176.0 -88.8 135.1 11.4 -5.3 -1.9 16 16 A Y E - 0 0 144 12,-3.0 2,-0.2 -2,-0.3 13,-0.1 -0.587 63.5 -60.6-131.1 66.7 14.5 -4.0 -3.7 17 17 A G E S- 0 0 48 -2,-0.1 11,-2.2 2,-0.0 2,-0.3 -0.595 70.8 -70.5 94.5-154.2 15.3 -6.7 -6.2 18 18 A T E -B 27 0A 78 9,-0.3 2,-0.4 -2,-0.2 9,-0.2 -0.886 24.9-133.1-140.9 161.9 16.1 -10.4 -5.7 19 19 A b E -B 26 0A 15 7,-2.5 7,-2.8 -2,-0.3 2,-0.5 -0.933 7.7-153.9-114.8 148.5 18.8 -12.7 -4.4 20 20 A I E +B 25 0A 131 -2,-0.4 2,-0.3 5,-0.2 5,-0.2 -0.985 38.9 146.0-118.1 112.2 20.1 -15.8 -6.2 21 21 A Y E > +B 24 0A 125 3,-2.1 3,-1.5 -2,-0.5 -2,-0.1 -0.988 59.3 2.2-155.9 134.7 21.4 -18.1 -3.4 22 22 A Q T 3 S- 0 0 138 -2,-0.3 3,-0.1 1,-0.2 -1,-0.1 0.856 128.4 -57.0 49.5 39.9 21.5 -21.9 -2.9 23 23 A G T 3 S+ 0 0 75 1,-0.2 2,-0.3 -3,-0.0 -1,-0.2 0.682 117.3 95.0 72.0 17.3 19.9 -22.5 -6.3 24 24 A X E < S- B 0 21A 82 -3,-1.5 -3,-2.1 2,-0.0 2,-0.5 -0.925 73.2-115.4-135.8 163.9 16.8 -20.4 -5.6 25 25 A L E - B 0 20A 113 -2,-0.3 2,-0.3 -5,-0.2 -5,-0.2 -0.886 35.2-174.1 -97.6 128.5 15.4 -16.9 -6.2 26 26 A W E - B 0 19A 52 -7,-2.8 -7,-2.5 -2,-0.5 2,-0.3 -0.847 30.1-107.0-116.0 154.7 14.7 -14.9 -3.0 27 27 A A E -AB 5 18A 11 -22,-2.9 -22,-2.5 -2,-0.3 2,-0.6 -0.628 28.5-136.8 -73.1 133.0 13.1 -11.5 -2.4 28 28 A F E -A 4 0A 69 -11,-2.2 -12,-3.0 -2,-0.3 2,-0.4 -0.901 34.6-174.4 -94.0 115.4 15.8 -8.9 -1.4 29 29 A c E AB 3 15A 0 -26,-2.9 -26,-2.5 -2,-0.6 -14,-0.2 -0.956 360.0 360.0-125.0 136.4 14.1 -7.0 1.4 30 30 A a 0 0 61 -16,-2.4 -16,-3.0 -2,-0.4 -28,-0.2 -0.970 360.0 360.0-139.5 360.0 14.9 -3.9 3.5