==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 25-AUG-93 1PNH . COMPND 2 MOLECULE: SCORPION TOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ANDROCTONUS MAURETANICUS MAURETANICUS; . AUTHOR S.MEUNIER,J.-M.BERNASSAU,J.-M.SABATIER,M.-F.MARTIN- . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2895.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 74.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 19.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 25.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 197 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -60.8 2.1 0.0 -1.2 2 2 A V - 0 0 103 22,-0.0 2,-0.4 0, 0.0 22,-0.1 -0.569 360.0 -84.0-144.6-153.1 -0.7 -1.0 -3.6 3 3 A a - 0 0 29 20,-0.2 2,-1.2 -2,-0.2 3,-0.1 -0.971 29.9-131.1-135.9 117.4 -4.0 -2.8 -3.7 4 4 A N > - 0 0 101 -2,-0.4 4,-4.1 1,-0.2 5,-0.2 -0.541 24.7-174.7 -69.7 97.6 -4.2 -6.6 -4.1 5 5 A L H > S+ 0 0 63 -2,-1.2 4,-4.7 2,-0.2 5,-0.3 0.984 84.1 46.8 -56.2 -64.8 -6.8 -6.8 -6.8 6 6 A R H > S+ 0 0 205 1,-0.3 4,-2.6 2,-0.2 -1,-0.2 0.855 118.7 44.4 -44.8 -41.9 -7.0 -10.6 -6.7 7 7 A R H > S+ 0 0 165 2,-0.2 4,-1.8 1,-0.2 -1,-0.3 0.909 115.1 46.7 -70.4 -44.4 -7.3 -10.3 -3.0 8 8 A b H X S+ 0 0 14 -4,-4.1 4,-2.2 2,-0.2 -2,-0.2 0.930 115.2 48.0 -62.6 -46.8 -9.7 -7.4 -3.2 9 9 A Q H >X S+ 0 0 54 -4,-4.7 4,-3.5 1,-0.2 3,-0.5 0.978 112.8 45.0 -56.7 -62.6 -11.8 -9.3 -5.7 10 10 A L H 3X S+ 0 0 91 -4,-2.6 4,-0.8 1,-0.3 -1,-0.2 0.810 109.9 60.9 -51.5 -31.4 -11.9 -12.6 -3.8 11 11 A S H >< S+ 0 0 72 -4,-1.8 3,-0.7 2,-0.2 4,-0.3 0.943 110.5 36.5 -61.3 -50.7 -12.7 -10.4 -0.9 12 12 A c H XX S+ 0 0 8 -4,-2.2 3,-3.0 -3,-0.5 4,-0.8 0.899 105.2 70.0 -68.4 -41.9 -15.8 -9.1 -2.4 13 13 A R H >< S+ 0 0 173 -4,-3.5 3,-0.7 1,-0.3 -1,-0.2 0.751 82.6 77.0 -46.2 -25.9 -16.5 -12.5 -4.0 14 14 A S T << S+ 0 0 106 -4,-0.8 -1,-0.3 -3,-0.7 -2,-0.2 0.876 93.5 47.7 -53.1 -40.9 -17.1 -13.4 -0.4 15 15 A L T <4 S- 0 0 150 -3,-3.0 -1,-0.3 -4,-0.3 -2,-0.2 0.734 124.5-110.0 -72.1 -23.1 -20.5 -11.8 -0.7 16 16 A G S << S+ 0 0 61 -4,-0.8 -3,-0.2 -3,-0.7 -2,-0.1 -0.129 89.9 93.4 119.4 -34.2 -21.0 -13.6 -3.9 17 17 A L S S- 0 0 52 -5,-0.4 -1,-0.4 1,-0.1 2,-0.3 0.271 81.1 -89.8 -69.9-157.4 -20.7 -10.7 -6.3 18 18 A L E -A 29 0A 31 11,-2.3 11,-3.3 -3,-0.1 2,-0.3 -0.835 30.6-144.9-121.2 159.2 -17.5 -9.6 -7.9 19 19 A G E -A 28 0A 0 -2,-0.3 2,-0.3 9,-0.3 9,-0.2 -0.852 9.1-167.5-123.3 158.9 -14.7 -7.1 -6.9 20 20 A K E -A 27 0A 96 7,-2.1 7,-2.3 -2,-0.3 2,-0.8 -0.996 18.2-138.5-147.4 142.9 -12.5 -4.7 -8.7 21 21 A a E -A 26 0A 26 -2,-0.3 2,-0.7 5,-0.2 5,-0.3 -0.883 21.4-172.2-106.4 103.2 -9.4 -2.7 -7.7 22 22 A I E > -A 25 0A 125 3,-2.4 3,-2.0 -2,-0.8 2,-1.6 -0.863 64.6 -47.3 -99.9 110.6 -9.7 0.8 -9.2 23 23 A G T 3 S- 0 0 75 -2,-0.7 -20,-0.2 1,-0.3 3,-0.1 -0.529 125.1 -26.0 71.3 -89.9 -6.4 2.7 -8.7 24 24 A V T 3 S+ 0 0 95 -2,-1.6 2,-0.4 1,-0.1 -1,-0.3 0.086 125.5 81.0-142.8 18.8 -5.8 1.9 -5.0 25 25 A K E < -A 22 0A 161 -3,-2.0 -3,-2.4 -22,-0.1 2,-0.3 -0.982 59.9-158.7-135.3 121.2 -9.3 1.3 -3.8 26 26 A b E -A 21 0A 36 -2,-0.4 2,-0.3 -5,-0.3 -5,-0.2 -0.688 13.7-180.0 -97.6 151.7 -11.2 -2.0 -4.3 27 27 A E E -A 20 0A 140 -7,-2.3 -7,-2.1 -2,-0.3 2,-0.6 -0.982 32.0-108.7-149.4 156.0 -14.9 -2.3 -4.2 28 28 A c E +A 19 0A 53 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.3 -0.790 43.5 172.5 -90.9 120.6 -17.6 -5.0 -4.6 29 29 A V E -A 18 0A 59 -11,-3.3 -11,-2.3 -2,-0.6 2,-0.3 -0.906 28.0-121.5-127.8 155.4 -19.5 -4.7 -7.8 30 30 A K 0 0 171 -2,-0.3 -13,-0.1 -13,-0.2 -11,-0.0 -0.702 360.0 360.0 -96.9 148.8 -22.1 -6.8 -9.5 31 31 A H 0 0 183 -2,-0.3 -1,-0.1 0, 0.0 -14,-0.0 0.452 360.0 360.0 -82.2 360.0 -21.7 -8.2 -13.0