==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 23-JUN-03 1PT4 . COMPND 2 MOLECULE: KALATA B2; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR C.V.JENNINGS,M.A.ANDERSON,N.L.DALY,K.J.ROSENGREN,D.J.CRAIK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2130.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 55.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 27.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 17 0, 0.0 28,-0.2 0, 0.0 22,-0.1 0.000 360.0 360.0 360.0 -27.2 4.1 0.5 -4.1 2 2 A G + 0 0 76 26,-0.7 2,-0.3 20,-0.3 27,-0.1 0.836 360.0 108.4 64.3 34.6 1.4 -0.3 -6.7 3 3 A E - 0 0 50 19,-0.5 19,-2.5 9,-0.0 2,-0.4 -0.997 58.8-141.1-145.3 136.8 -0.5 -2.5 -4.2 4 4 A T B -A 21 0A 76 -2,-0.3 17,-0.3 17,-0.3 2,-0.3 -0.768 0.6-156.8 -99.4 143.6 -3.7 -2.2 -2.4 5 5 A b > + 0 0 0 15,-0.9 3,-2.4 -2,-0.4 16,-0.2 -0.493 31.1 153.5-115.4 60.4 -4.3 -3.3 1.2 6 6 A F T 3 S+ 0 0 146 1,-0.3 -1,-0.2 -2,-0.3 15,-0.1 0.854 85.4 39.0 -56.0 -34.9 -8.1 -3.7 1.2 7 7 A G T 3 S- 0 0 70 2,-0.3 -1,-0.3 -3,-0.2 3,-0.1 0.168 127.7 -99.8-100.5 17.0 -7.6 -6.2 4.0 8 8 A G S < S+ 0 0 49 -3,-2.4 2,-0.3 1,-0.2 -2,-0.1 0.892 90.9 106.2 68.1 40.8 -4.9 -4.2 5.6 9 9 A T - 0 0 103 -5,-0.1 2,-0.3 13,-0.0 -2,-0.3 -0.995 43.8-173.8-151.5 146.5 -2.1 -6.3 4.1 10 10 A c - 0 0 31 -2,-0.3 5,-0.1 1,-0.1 -5,-0.1 -0.997 21.8-153.0-145.7 138.7 0.5 -6.0 1.4 11 11 A N S S+ 0 0 142 -2,-0.3 -1,-0.1 2,-0.1 -8,-0.0 0.884 77.5 89.5 -74.0 -42.6 3.0 -8.4 -0.2 12 12 A T S > S- 0 0 39 1,-0.1 3,-0.7 -11,-0.1 -9,-0.0 -0.419 83.4-125.8 -62.2 118.2 5.4 -5.6 -1.2 13 13 A P T 3 S+ 0 0 109 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.326 85.8 26.1 -68.4 147.5 7.8 -5.0 1.8 14 14 A G T 3 S+ 0 0 64 1,-0.2 2,-0.5 -2,-0.0 11,-0.2 0.746 86.6 133.3 73.6 25.8 8.3 -1.6 3.3 15 15 A a < - 0 0 23 -3,-0.7 2,-0.4 9,-0.1 9,-0.2 -0.937 50.7-140.8-114.2 122.5 4.8 -0.4 2.3 16 16 A S E -B 23 0A 75 7,-3.1 7,-3.4 -2,-0.5 2,-1.7 -0.641 24.2-121.4 -79.4 127.5 2.6 1.4 4.8 17 17 A b E -B 22 0A 50 -2,-0.4 2,-1.9 5,-0.3 5,-0.3 -0.528 31.3-179.9 -74.9 90.2 -1.0 0.4 4.5 18 18 A T E > -B 21 0A 75 -2,-1.7 3,-2.4 3,-1.4 -1,-0.1 -0.559 55.9 -88.7 -88.5 68.1 -2.7 3.7 3.8 19 19 A W T 3 S+ 0 0 192 -2,-1.9 -13,-0.1 1,-0.4 -15,-0.0 0.169 109.8 8.1 -26.4 123.5 -6.0 1.9 3.5 20 20 A P T 3 S+ 0 0 50 0, 0.0 -15,-0.9 0, 0.0 2,-0.4 -0.873 133.2 46.1-101.0 30.8 -6.9 0.9 1.1 21 21 A I E < S-AB 4 18A 75 -3,-2.4 -3,-1.4 -17,-0.3 2,-0.3 -0.988 72.8-128.4-131.1 131.3 -3.6 1.6 -0.7 22 22 A c E - B 0 17A 0 -19,-2.5 -19,-0.5 -2,-0.4 2,-0.4 -0.585 26.6-161.3 -79.1 132.5 -0.0 0.8 0.5 23 23 A T E - B 0 16A 9 -7,-3.4 -7,-3.1 -2,-0.3 2,-1.3 -0.888 22.9-130.2-116.2 147.1 2.4 3.7 0.3 24 24 A R B > S-C 27 0B 103 3,-4.1 3,-0.9 -2,-0.4 -9,-0.1 -0.727 94.7 -35.2 -94.4 83.4 6.2 3.8 0.3 25 25 A D T 3 S- 0 0 155 -2,-1.3 -1,-0.2 1,-0.2 -10,-0.1 0.933 129.9 -36.3 64.7 49.3 6.6 6.3 3.1 26 26 A G T 3 S+ 0 0 54 1,-0.2 -1,-0.2 -3,-0.1 -11,-0.0 0.062 119.6 107.5 95.0 -26.6 3.6 8.3 2.0 27 27 A L B < -C 24 0B 108 -3,-0.9 -3,-4.1 1,-0.1 2,-1.9 -0.782 65.6-143.9 -92.0 119.9 4.1 7.7 -1.7 28 28 A P 0 0 81 0, 0.0 -26,-0.7 0, 0.0 -5,-0.1 -0.051 360.0 360.0 -71.3 39.0 1.6 5.2 -3.3 29 29 A V 0 0 108 -2,-1.9 -6,-0.1 -28,-0.2 -2,-0.0 0.278 360.0 360.0 -88.3 360.0 4.4 4.0 -5.5