==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN/RNA 14-MAY-07 2PXK . COMPND 2 MOLECULE: SIGNAL RECOGNITION PARTICLE PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR A.Y.KEEL,R.P.RAMBO,R.T.BATEY,J.S.KIEFT . 69 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4752.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 76.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 17.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 36 52.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A F 0 0 87 0, 0.0 2,-0.1 0, 0.0 67,-0.1 0.000 360.0 360.0 360.0 102.6 156.0 16.6 36.1 2 2 A D > - 0 0 36 28,-0.0 4,-1.7 1,-0.0 3,-0.5 -0.387 360.0 -88.9-103.1-176.0 157.3 13.1 36.9 3 3 A L H > S+ 0 0 0 25,-1.1 4,-1.6 24,-0.2 5,-0.2 0.874 117.4 70.8 -63.2 -39.6 155.7 9.7 36.8 4 4 A N H > S+ 0 0 52 24,-1.3 4,-1.1 1,-0.2 3,-0.4 0.896 106.2 38.7 -43.6 -48.7 154.4 9.9 40.4 5 5 A D H >> S+ 0 0 65 -3,-0.5 3,-1.2 1,-0.2 4,-1.0 0.984 108.9 60.2 -66.6 -57.4 151.8 12.5 39.2 6 6 A F H 3< S+ 0 0 12 -4,-1.7 -1,-0.2 1,-0.3 -2,-0.2 0.672 101.4 58.9 -45.2 -19.2 151.1 10.8 35.9 7 7 A L H 3< S+ 0 0 41 -4,-1.6 -1,-0.3 -3,-0.4 -2,-0.2 0.936 92.5 63.0 -78.1 -47.0 150.0 7.9 38.1 8 8 A E H << 0 0 172 -3,-1.2 -2,-0.2 -4,-1.1 -1,-0.1 0.914 360.0 360.0 -37.5 -60.6 147.3 9.8 39.9 9 9 A Q < 0 0 121 -4,-1.0 -3,-0.1 0, 0.0 -2,-0.1 0.791 360.0 360.0 -79.3 360.0 145.5 10.2 36.6 10 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 11 23 A K 0 0 130 0, 0.0 4,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -74.5 140.8 -2.2 32.3 12 24 A V > + 0 0 89 1,-0.2 4,-0.7 2,-0.2 5,-0.0 0.601 360.0 62.6 -72.1 -9.9 143.7 -0.8 30.4 13 25 A L H >> S+ 0 0 56 2,-0.2 3,-1.4 1,-0.2 4,-0.9 0.965 92.8 55.7 -78.7 -57.9 144.3 1.5 33.4 14 26 A V H 3> S+ 0 0 66 1,-0.3 4,-1.2 2,-0.2 -1,-0.2 0.635 112.1 48.2 -51.6 -13.6 145.1 -1.1 36.1 15 27 A R H 3> S+ 0 0 43 -4,-0.4 4,-1.1 2,-0.2 -1,-0.3 0.716 104.2 55.9 -98.3 -27.9 147.8 -2.3 33.8 16 28 A X H << S+ 0 0 44 -3,-1.4 -2,-0.2 -4,-0.7 -1,-0.1 0.499 113.8 45.6 -80.1 -4.2 149.3 1.1 33.1 17 29 A E H >X S+ 0 0 77 -4,-0.9 3,-2.6 2,-0.1 4,-2.5 0.807 103.9 56.8-100.7 -50.3 149.6 1.3 36.8 18 30 A A H 3< S+ 0 0 35 -4,-1.2 -2,-0.2 1,-0.3 -3,-0.1 0.810 103.5 59.8 -51.2 -30.2 151.1 -2.1 37.6 19 31 A I T 3< S+ 0 0 7 -4,-1.1 -1,-0.3 1,-0.2 3,-0.2 0.666 108.4 42.0 -74.1 -18.5 153.8 -1.0 35.2 20 32 A I T X4 S+ 0 0 0 -3,-2.6 3,-2.4 1,-0.1 -2,-0.2 0.795 102.7 67.1 -94.4 -35.4 154.7 2.0 37.4 21 33 A N T 3< S+ 0 0 104 -4,-2.5 -2,-0.2 1,-0.3 -1,-0.1 0.383 95.6 60.2 -65.6 5.8 154.4 -0.0 40.6 22 34 A S T 3 S+ 0 0 30 -5,-0.2 -1,-0.3 -3,-0.2 2,-0.1 0.311 90.7 89.1-113.8 4.7 157.5 -2.0 39.4 23 35 A X S < S- 0 0 12 -3,-2.4 2,-0.2 1,-0.1 -3,-0.1 -0.416 75.5-116.8 -96.4 174.1 159.7 1.0 39.3 24 36 A T > - 0 0 57 -2,-0.1 4,-2.6 1,-0.1 5,-0.2 -0.664 31.5-106.0-104.6 165.3 161.9 2.6 42.0 25 37 A X T 4 S+ 0 0 126 -2,-0.2 4,-0.3 1,-0.2 5,-0.2 0.895 121.9 56.5 -58.9 -38.4 161.4 6.1 43.4 26 38 A K T >> S+ 0 0 158 1,-0.2 4,-3.1 2,-0.2 3,-1.1 0.940 109.8 45.4 -58.2 -45.2 164.4 7.2 41.4 27 39 A E T 34 S+ 0 0 0 1,-0.3 -24,-0.2 2,-0.2 -2,-0.2 0.966 104.6 58.8 -61.6 -54.8 162.8 6.0 38.2 28 40 A R T 3< S+ 0 0 40 -4,-2.6 -24,-1.3 1,-0.2 -25,-1.1 0.548 117.5 37.8 -54.3 -3.9 159.4 7.5 38.9 29 41 A A T <4 S+ 0 0 46 -3,-1.1 -2,-0.2 -4,-0.3 -1,-0.2 0.747 126.7 28.9-113.1 -49.6 161.4 10.8 39.1 30 42 A K >< + 0 0 104 -4,-3.1 3,-1.2 -5,-0.2 4,-0.4 -0.579 65.1 174.1-114.0 67.5 164.0 10.6 36.3 31 43 A P G > S+ 0 0 18 0, 0.0 3,-1.9 0, 0.0 -1,-0.2 0.753 71.8 72.6 -44.6 -28.2 162.3 8.3 33.7 32 44 A E G 3 S+ 0 0 114 1,-0.3 -5,-0.1 -3,-0.1 -2,-0.0 0.959 85.3 61.1 -54.2 -55.1 165.3 9.0 31.4 33 45 A I G < S+ 0 0 54 -3,-1.2 2,-2.2 1,-0.2 -1,-0.3 0.649 82.2 98.3 -47.2 -12.8 167.6 6.8 33.5 34 46 A I < + 0 0 3 -3,-1.9 -1,-0.2 -4,-0.4 -2,-0.0 -0.460 54.7 146.5 -80.7 71.7 165.2 4.1 32.6 35 47 A K > - 0 0 151 -2,-2.2 4,-2.6 4,-0.0 5,-0.2 0.201 61.8 -47.4 -85.4-150.4 167.1 2.6 29.6 36 48 A G H > S+ 0 0 48 1,-0.2 4,-2.5 2,-0.2 5,-0.1 0.914 128.6 41.4 -48.5 -66.5 167.3 -1.0 28.4 37 49 A S H > S+ 0 0 85 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.873 118.3 45.6 -57.5 -44.5 168.0 -3.1 31.5 38 50 A R H > S+ 0 0 86 2,-0.2 4,-2.6 -5,-0.2 5,-0.3 0.993 108.7 57.0 -62.7 -55.7 165.6 -1.3 33.8 39 51 A K H X S+ 0 0 47 -4,-2.6 4,-1.5 1,-0.2 -2,-0.2 0.880 109.5 48.9 -36.9 -52.5 162.9 -1.3 31.0 40 52 A R H >X S+ 0 0 171 -4,-2.5 3,-2.0 1,-0.2 4,-1.2 0.981 108.7 48.7 -52.6 -69.6 163.4 -5.1 31.1 41 53 A R H 3X S+ 0 0 100 -4,-2.4 4,-1.7 1,-0.3 -1,-0.2 0.831 111.0 53.7 -37.8 -45.8 163.1 -5.5 34.9 42 54 A I H 3X S+ 0 0 0 -4,-2.6 4,-1.3 2,-0.2 -1,-0.3 0.784 107.2 50.9 -62.9 -34.2 159.9 -3.4 34.8 43 55 A A H X< S+ 0 0 5 -3,-2.0 3,-1.2 -4,-1.5 5,-0.5 0.993 114.0 40.4 -67.2 -70.0 158.3 -5.5 32.2 44 56 A A H 3< S+ 0 0 83 -4,-1.2 3,-0.2 1,-0.3 -2,-0.2 0.702 112.9 57.5 -52.0 -25.5 158.8 -8.9 33.9 45 57 A G H 3< S+ 0 0 57 -4,-1.7 -1,-0.3 -5,-0.4 -2,-0.2 0.881 115.0 35.0 -75.0 -37.8 158.0 -7.4 37.3 46 58 A S S << S- 0 0 23 -4,-1.3 -1,-0.2 -3,-1.2 -2,-0.2 0.216 120.6-110.0 -96.7 11.1 154.6 -6.2 36.2 47 59 A G S S+ 0 0 51 -4,-0.4 -3,-0.2 -3,-0.2 2,-0.2 0.992 76.1 119.3 56.1 73.3 154.2 -9.2 34.0 48 60 A X - 0 0 50 -5,-0.5 2,-0.3 -29,-0.0 -1,-0.2 -0.834 64.9-101.7-149.9-174.7 154.5 -7.5 30.6 49 61 A Q >> - 0 0 131 -2,-0.2 3,-2.2 -6,-0.1 4,-1.4 -0.874 38.5-113.4-114.4 150.6 156.5 -7.2 27.4 50 62 A V H 3>>S+ 0 0 53 -2,-0.3 4,-3.9 1,-0.3 5,-0.6 0.929 117.9 68.1 -52.4 -41.2 158.9 -4.3 27.0 51 63 A Q H 3>5S+ 0 0 167 1,-0.2 4,-0.7 2,-0.2 -1,-0.3 0.834 102.3 48.2 -43.8 -35.8 156.6 -3.1 24.3 52 64 A D H <>5S+ 0 0 59 -3,-2.2 4,-2.5 2,-0.2 -1,-0.2 0.969 117.4 37.8 -70.1 -55.5 154.2 -2.5 27.1 53 65 A V H X5S+ 0 0 0 -4,-1.4 4,-2.2 1,-0.2 5,-0.2 0.955 117.8 49.6 -60.9 -52.5 156.6 -0.7 29.4 54 66 A N H X5S+ 0 0 81 -4,-3.9 4,-0.8 1,-0.2 -1,-0.2 0.780 110.8 56.1 -57.3 -25.8 158.3 1.1 26.5 55 67 A R H >XX S+ 0 0 112 -4,-1.9 4,-1.9 -5,-0.2 3,-1.0 0.949 117.6 45.5 -49.5 -51.8 151.6 18.9 26.9 67 79 A X H 3< S+ 0 0 79 -4,-2.2 2,-1.3 1,-0.3 -2,-0.2 0.958 109.2 51.1 -54.8 -61.8 152.3 19.7 30.6 68 80 A K T 3< S+ 0 0 92 -4,-3.5 -1,-0.3 1,-0.2 -2,-0.1 0.019 113.2 54.5 -69.9 33.2 155.7 21.2 30.1 69 81 A K T <4 0 0 182 -2,-1.3 -2,-0.2 -3,-1.0 -1,-0.2 0.570 360.0 360.0-129.5 -55.7 154.0 23.4 27.5 70 82 A X < 0 0 216 -4,-1.9 -3,-0.1 -3,-0.2 -2,-0.1 0.968 360.0 360.0 -82.2 360.0 151.0 25.1 29.1