==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTITUMOR PROTEIN 24-JUL-03 1Q2I . COMPND 2 MOLECULE: PNC27; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.ROSAL,M.R.PINCUS,P.W.BRANDT-RAUF,R.L.FINE,H.WANG . 32 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3627.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 15 46.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 134 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 170.7 -11.9 8.5 -6.4 2 2 A P + 0 0 118 0, 0.0 2,-0.2 0, 0.0 6,-0.0 -0.580 360.0 104.8 -72.4 118.0 -9.9 9.4 -3.3 3 3 A L - 0 0 106 -2,-0.5 2,-0.3 5,-0.1 4,-0.0 -0.728 34.9-178.7 169.5 140.5 -11.7 8.0 -0.2 4 4 A S + 0 0 69 -2,-0.2 0, 0.0 4,-0.1 0, 0.0 -0.855 35.6 105.6-157.7 116.8 -11.4 5.1 2.2 5 5 A Q S S- 0 0 117 -2,-0.3 -2,-0.0 0, 0.0 0, 0.0 0.100 92.4 -15.2-149.3 -90.0 -13.7 4.3 5.1 6 6 A E S S+ 0 0 153 3,-0.1 -2,-0.0 4,-0.0 2,-0.0 -0.232 135.6 12.6-124.8 42.3 -16.1 1.3 5.1 7 7 A T S >> S+ 0 0 90 -4,-0.0 3,-3.5 0, 0.0 4,-0.6 -0.200 122.5 43.0-169.2 -89.6 -16.1 0.6 1.4 8 8 A F H 3> S+ 0 0 58 1,-0.3 4,-0.6 2,-0.2 3,-0.4 0.713 112.8 63.1 -50.6 -19.1 -13.6 2.0 -1.1 9 9 A S H 3> S+ 0 0 44 1,-0.2 4,-0.6 2,-0.1 -1,-0.3 0.747 87.5 68.3 -78.0 -24.7 -11.2 1.2 1.7 10 10 A D H <4 S+ 0 0 134 -3,-3.5 -1,-0.2 2,-0.1 -2,-0.2 0.764 107.8 40.9 -64.6 -24.7 -12.0 -2.5 1.3 11 11 A L H < S+ 0 0 49 -4,-0.6 2,-4.1 -3,-0.4 3,-0.4 0.800 91.8 67.6 -86.4-101.0 -10.2 -2.4 -2.0 12 12 A W H >X S+ 0 0 115 -4,-0.6 3,-1.5 1,-0.4 4,-1.0 0.505 83.3 89.3 8.5 -35.0 -7.0 -0.3 -2.1 13 13 A K H 3X S+ 0 0 145 -2,-4.1 4,-0.5 -4,-0.6 -1,-0.4 0.611 78.6 62.9 -53.2 -8.7 -6.0 -3.2 0.1 14 14 A L H 3> S+ 0 0 57 -3,-0.4 4,-0.5 2,-0.2 3,-0.5 0.875 94.3 54.5 -84.0 -42.1 -5.1 -4.7 -3.3 15 15 A L H X> S+ 0 0 87 -3,-1.5 4,-3.8 1,-0.2 3,-0.8 0.704 91.1 82.8 -64.3 -18.6 -2.4 -2.2 -4.1 16 16 A K H 3X S+ 0 0 85 -4,-1.0 4,-2.7 2,-0.3 3,-0.3 0.959 86.8 49.7 -48.6 -64.2 -0.9 -3.1 -0.8 17 17 A K H 3< S+ 0 0 126 -4,-0.5 -1,-0.3 -3,-0.5 -2,-0.2 0.770 129.8 26.3 -47.5 -26.3 0.9 -6.2 -2.2 18 18 A W H << S+ 0 0 131 -3,-0.8 -2,-0.3 -4,-0.5 -1,-0.3 0.497 124.7 50.9-112.9 -12.1 2.1 -3.7 -4.8 19 19 A K H < S+ 0 0 152 -4,-3.8 -3,-0.3 -3,-0.3 -2,-0.2 0.346 86.5 113.0-105.2 2.4 1.8 -0.6 -2.7 20 20 A M S < S- 0 0 70 -4,-2.7 -3,-0.1 -5,-0.4 -2,-0.0 0.417 102.3 -44.1 -53.1-155.8 3.8 -2.2 0.2 21 21 A R S S+ 0 0 114 1,-0.2 2,-2.2 2,-0.1 7,-0.2 0.453 112.4 110.7 -58.2 4.7 7.3 -0.8 1.0 22 22 A R + 0 0 135 5,-0.1 -1,-0.2 1,-0.1 5,-0.2 -0.425 44.1 110.9 -81.2 64.5 7.6 -0.9 -2.8 23 23 A N S S- 0 0 75 -2,-2.2 -1,-0.1 3,-0.3 4,-0.1 0.726 81.3 -96.3 -99.6 -95.9 7.6 2.9 -3.0 24 24 A Q S > S+ 0 0 161 -3,-0.1 3,-0.5 0, 0.0 -3,-0.0 0.246 109.2 27.9-156.1 -60.0 10.9 4.6 -4.1 25 25 A F T 3 S+ 0 0 158 1,-0.2 2,-0.2 -3,-0.0 -3,-0.0 0.805 126.7 45.8 -84.8 -32.9 13.0 5.9 -1.1 26 26 A W T 3 S+ 0 0 130 2,-0.1 2,-0.8 1,-0.0 -3,-0.3 -0.341 79.1 127.6-105.3 49.7 11.6 3.2 1.3 27 27 A V S < S- 0 0 58 -3,-0.5 -5,-0.1 1,-0.2 -1,-0.0 -0.805 91.3 -16.6-109.5 89.8 12.0 0.3 -1.1 28 28 A K S S+ 0 0 186 -2,-0.8 -1,-0.2 -7,-0.2 -6,-0.1 0.871 92.5 132.5 84.5 41.7 14.0 -2.4 0.7 29 29 A V + 0 0 94 -3,-0.2 2,-0.3 -8,-0.1 -2,-0.1 -0.041 64.7 43.7-112.0 28.4 15.3 -0.1 3.5 30 30 A Q S S- 0 0 144 2,-0.1 -2,-0.0 -4,-0.0 -4,-0.0 -0.972 89.3 -91.2-165.9 155.5 14.5 -2.5 6.3 31 31 A R 0 0 222 -2,-0.3 -2,-0.1 -3,-0.0 -3,-0.1 -0.190 360.0 360.0 -67.2 164.1 14.6 -6.2 7.3 32 32 A G 0 0 110 -4,-0.1 -2,-0.1 0, 0.0 -4,-0.1 0.396 360.0 360.0 109.3 360.0 11.6 -8.5 6.5