==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-MAR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFUNGAL PROTEIN 30-JUL-03 1Q3J . COMPND 2 MOLECULE: ALO3; . SOURCE 2 SYNTHETIC: YES; . AUTHOR F.BARBAULT,C.LANDON,M.GUENNEUGUES,J.P.MEYER,V.SCHOTT,J.L.DIM . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2739.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 38.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 19.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 74 0, 0.0 7,-0.1 0, 0.0 16,-0.1 0.000 360.0 360.0 360.0 156.7 4.3 -6.6 1.5 2 2 A I + 0 0 65 5,-0.2 3,-0.2 19,-0.1 31,-0.2 0.280 360.0 72.8 70.6 158.0 0.6 -7.7 1.5 3 3 A K S S- 0 0 128 1,-0.1 2,-2.9 29,-0.1 30,-0.6 0.351 94.8 -74.5 78.5 149.0 -1.9 -7.6 4.4 4 4 A N S S+ 0 0 83 1,-0.2 -1,-0.1 28,-0.1 30,-0.1 -0.296 121.2 62.3 -71.8 56.7 -3.6 -4.6 6.0 5 5 A G S S+ 0 0 54 -2,-2.9 2,-0.3 -3,-0.2 -1,-0.2 0.012 82.4 80.5-175.8 49.5 -0.4 -3.6 7.8 6 6 A N S S- 0 0 75 -3,-0.3 27,-1.4 27,-0.1 -1,-0.1 -0.966 81.7 -87.1-161.9 145.9 2.3 -2.7 5.3 7 7 A G E +A 32 0A 56 -2,-0.3 25,-0.2 25,-0.2 -5,-0.2 -0.283 55.4 142.1 -59.1 137.0 3.3 0.3 3.1 8 8 A b E S+ 0 0 12 23,-1.7 8,-0.5 15,-0.1 24,-0.2 0.481 74.3 15.5-140.9 -50.7 1.6 0.4 -0.2 9 9 A Q E +A 31 0A 54 22,-2.6 22,-2.0 6,-0.2 23,-0.1 -0.566 61.8 157.9-135.0 70.5 0.7 4.0 -1.2 10 10 A P S S- 0 0 67 0, 0.0 -1,-0.1 0, 0.0 22,-0.1 0.864 91.6 -6.5 -61.5 -39.3 2.6 6.5 1.1 11 11 A N S S- 0 0 113 20,-0.1 3,-0.1 19,-0.1 19,-0.1 0.112 104.9 -94.7-147.1 24.5 2.4 9.3 -1.4 12 12 A G + 0 0 47 1,-0.2 2,-2.0 19,-0.1 -3,-0.1 0.778 65.0 157.0 66.1 31.0 0.8 7.8 -4.5 13 13 A S S S- 0 0 76 1,-0.2 -1,-0.2 3,-0.0 3,-0.1 -0.374 87.7 -60.8 -83.2 58.8 4.1 7.1 -6.2 14 14 A Q S S- 0 0 188 -2,-2.0 -1,-0.2 1,-0.2 2,-0.1 0.944 77.7-156.4 62.8 49.2 2.5 4.4 -8.3 15 15 A G + 0 0 25 -6,-0.0 2,-0.3 1,-0.0 -6,-0.2 -0.329 22.9 163.5 -60.8 134.1 1.6 2.4 -5.2 16 16 A N - 0 0 131 -8,-0.5 2,-0.3 -3,-0.1 17,-0.1 -0.925 25.5-145.5-157.8 127.7 1.1 -1.3 -5.8 17 17 A c > - 0 0 3 -2,-0.3 3,-1.4 1,-0.1 -9,-0.1 -0.692 24.4-123.4 -95.5 148.2 1.0 -4.3 -3.5 18 18 A a T 3 S+ 0 0 94 -2,-0.3 -1,-0.1 1,-0.3 0, 0.0 0.832 113.0 60.5 -56.1 -34.9 2.4 -7.7 -4.3 19 19 A S T 3 S- 0 0 50 2,-0.2 -1,-0.3 1,-0.1 3,-0.1 0.785 112.9-121.1 -63.8 -29.0 -1.1 -9.1 -3.5 20 20 A G S < S+ 0 0 60 -3,-1.4 2,-0.3 1,-0.3 -2,-0.1 0.781 83.4 89.2 88.7 30.8 -2.5 -6.9 -6.3 21 21 A Y + 0 0 100 13,-0.1 13,-1.8 -4,-0.0 -1,-0.3 -0.941 47.6 169.2-159.9 133.1 -4.8 -5.2 -3.9 22 22 A b E -B 33 0A 19 -2,-0.3 2,-0.2 11,-0.3 11,-0.2 -0.659 19.1-143.2-133.1-171.8 -4.4 -2.1 -1.7 23 23 A H E +B 32 0A 41 9,-1.4 9,-0.9 -2,-0.2 2,-0.4 -0.801 21.5 161.3-164.6 118.6 -6.4 0.3 0.4 24 24 A K - 0 0 79 -2,-0.2 7,-0.1 7,-0.2 -2,-0.0 -0.929 17.5-159.6-147.4 119.2 -6.1 4.1 0.9 25 25 A Q - 0 0 99 -2,-0.4 2,-3.1 1,-0.1 3,-0.3 -0.668 37.5-103.9 -94.8 149.7 -8.7 6.4 2.2 26 26 A P S S+ 0 0 147 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.272 111.3 51.9 -69.7 57.5 -8.7 10.2 1.6 27 27 A G S S+ 0 0 69 -2,-3.1 2,-0.0 1,-0.5 -3,-0.0 0.317 87.6 68.9-152.4 -59.7 -7.4 10.9 5.1 28 28 A W S S- 0 0 75 -3,-0.3 -1,-0.5 1,-0.1 3,-0.1 -0.321 71.4-132.7 -72.6 156.4 -4.4 8.9 6.2 29 29 A V S S+ 0 0 119 1,-0.2 2,-0.5 -3,-0.1 -1,-0.1 0.984 88.0 41.9 -73.7 -63.8 -1.0 9.6 4.6 30 30 A A S S- 0 0 52 -19,-0.1 2,-0.3 -18,-0.0 -1,-0.2 -0.782 77.7-142.3 -93.4 124.9 0.3 6.2 3.7 31 31 A G E -A 9 0A 1 -22,-2.0 -22,-2.6 -2,-0.5 -23,-1.7 -0.656 17.6-143.0 -84.5 136.0 -2.1 3.7 2.3 32 32 A Y E -AB 7 23A 71 -9,-0.9 -9,-1.4 -2,-0.3 -25,-0.2 -0.536 20.6 -96.1 -96.6 165.1 -1.7 0.1 3.4 33 33 A c E - B 0 22A 0 -27,-1.4 2,-0.3 -30,-0.6 -11,-0.3 -0.164 33.9-156.8 -70.6 169.9 -2.1 -3.2 1.5 34 34 A R - 0 0 60 -13,-1.8 -13,-0.1 -30,-0.1 -17,-0.1 -0.990 18.8-167.0-151.4 142.2 -5.3 -5.2 1.5 35 35 A R 0 0 171 -2,-0.3 -1,-0.1 -33,-0.1 -13,-0.1 0.767 360.0 360.0 -99.3 -34.2 -6.0 -8.9 0.8 36 36 A K 0 0 181 -15,-0.0 -14,-0.0 0, 0.0 -2,-0.0 0.311 360.0 360.0-165.2 360.0 -9.8 -8.8 0.5