==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 12-APR-99 1QFI . COMPND 2 MOLECULE: ACTINOMYCIN X2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.LIFFERTH,I.BAHNER,H.LACKNER,M.SCHAEFER . 30 6 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2672.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 30.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 53 0, 0.0 2,-0.6 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0 164.6 12.5 9.1 11.0 2 2 A X B -A 8 0A 42 6,-2.6 6,-2.5 3,-0.4 26,-0.1 -0.629 360.0 -72.2 86.9-115.2 14.4 10.2 7.9 3 3 A X S S+ 0 0 92 -2,-0.6 -1,-0.3 4,-0.3 24,-0.1 0.375 132.0 29.1 -83.4 138.2 13.0 12.6 6.9 4 4 A X 0 0 54 -3,-0.4 -2,-0.1 -2,-0.1 4,-0.0 0.500 360.0 360.0-112.8-170.4 10.9 10.8 6.0 5 5 A X 0 0 176 -4,-0.2 -3,-0.4 -3,-0.1 3,-0.0 0.939 360.0 360.0 54.0 360.0 9.7 7.5 7.5 6 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 7 7 A T 0 0 73 0, 0.0 3,-0.3 0, 0.0 -4,-0.3 0.000 360.0 360.0 360.0 164.2 14.6 13.0 11.3 8 8 A X B -A 2 0A 52 -6,-2.5 -6,-2.6 3,-0.4 2,-0.1 -0.514 360.0 -70.0 77.2-120.8 17.0 10.1 11.9 9 9 A P S S+ 0 0 56 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.320 130.7 22.1 -88.8 154.6 16.0 8.8 14.4 10 10 A X 0 0 59 -3,-0.3 -8,-0.1 -2,-0.1 -2,-0.0 0.717 360.0 360.0 -89.7-169.7 16.9 10.9 16.2 11 11 A X 0 0 171 -4,-0.2 -3,-0.4 -3,-0.1 -9,-0.0 0.942 360.0 360.0 62.9 360.0 17.3 14.4 14.9 12 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 13 1 B T > 0 0 60 0, 0.0 2,-0.6 0, 0.0 3,-0.5 0.000 360.0 360.0 360.0 159.1 11.7 8.0 19.5 14 2 B X B 3 -B 20 0B 78 6,-2.0 6,-2.5 3,-0.4 2,-0.1 -0.668 360.0 -67.4 89.7-113.6 10.1 6.2 22.4 15 3 B X T 3 S+ 0 0 119 -2,-0.6 -1,-0.3 4,-0.3 2,-0.1 0.368 132.2 18.6 -81.9 145.7 8.5 8.3 23.8 16 4 B X < 0 0 65 -3,-0.5 4,-0.1 -2,-0.1 0, 0.0 0.681 360.0 360.0-103.4-162.1 11.0 9.6 24.6 17 5 B X 0 0 174 -4,-0.1 -3,-0.4 -3,-0.1 3,-0.0 0.931 360.0 360.0 57.8 360.0 14.6 9.2 23.1 18 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 19 7 B T 0 0 73 0, 0.0 -4,-0.3 0, 0.0 3,-0.3 0.000 360.0 360.0 360.0 159.5 7.1 7.1 19.2 20 8 B X B -B 14 0B 81 -6,-2.5 -6,-2.0 3,-0.4 2,-0.1 -0.376 360.0 -71.8 63.6-122.8 9.2 4.1 18.2 21 9 B P S S+ 0 0 49 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.294 130.2 36.6 -84.7 156.7 9.9 4.6 15.4 22 10 B X 0 0 66 -3,-0.3 -8,-0.1 -2,-0.1 -2,-0.0 0.632 360.0 360.0 -92.1-176.8 7.4 4.1 14.2 23 11 B X 0 0 174 -4,-0.2 -3,-0.4 -3,-0.1 0, 0.0 0.880 360.0 360.0 56.4 360.0 4.2 5.3 16.0 24 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 25 1 C T 0 0 76 0, 0.0 2,-0.5 0, 0.0 3,-0.4 0.000 360.0 360.0 360.0 156.4 23.3 14.9 2.5 26 2 C X B -C 32 0C 84 6,-2.1 6,-2.4 3,-0.4 2,-0.1 -0.594 360.0 -68.1 85.9-119.1 21.4 11.6 2.6 27 3 C X S S+ 0 0 66 -2,-0.5 -1,-0.3 4,-0.3 -24,-0.1 0.394 132.0 24.3 -79.6 151.0 18.5 12.2 3.5 28 4 C X 0 0 21 -3,-0.4 -25,-0.1 -2,-0.1 -26,-0.0 0.724 360.0 360.0 -97.4-171.0 19.4 12.9 6.2 29 5 C X 0 0 152 -4,-0.2 -3,-0.4 -3,-0.1 3,-0.0 0.945 360.0 360.0 61.1 360.0 22.8 14.2 7.1 30 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 31 7 C T 0 0 69 0, 0.0 3,-0.4 0, 0.0 -5,-0.3 0.000 360.0 360.0 360.0 159.2 19.6 14.9 0.1 32 8 C X B -C 26 0C 86 -6,-2.4 -6,-2.1 3,-0.3 2,-0.1 -0.605 360.0 -66.6 85.7-116.0 22.5 13.3 -1.7 33 9 C P S S+ 0 0 106 0, 0.0 -1,-0.3 0, 0.0 2,-0.1 0.376 132.2 31.5 -78.0 150.6 24.5 15.5 -2.1 34 10 C X 0 0 68 -3,-0.4 -8,-0.0 -2,-0.1 -2,-0.0 0.644 360.0 360.0-103.0-172.9 22.9 16.9 -4.0 35 11 C X 0 0 177 -4,-0.1 -3,-0.3 -3,-0.1 -9,-0.0 0.947 360.0 360.0 54.1 360.0 19.1 17.2 -4.0