==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CYTOKINE 01-MAY-99 1QGM . COMPND 2 MOLECULE: PROTEIN (AMINO-TERMINAL CARP GRANULIN-1); . SOURCE 2 SYNTHETIC: YES; . AUTHOR W.F.VRANKEN,P.XU,F.NI . 30 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2328.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 11 36.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 23.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 116 0, 0.0 11,-0.1 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 151.7 7.9 5.0 2.0 2 2 A I B -A 10 0A 71 8,-1.5 8,-1.5 9,-0.7 2,-0.3 -0.437 360.0-158.3 -87.5 166.3 6.6 3.9 -1.4 3 3 A H + 0 0 105 6,-0.2 13,-0.1 -2,-0.1 6,-0.1 -0.957 30.6 148.6-141.8 161.0 3.7 5.6 -3.3 4 4 A a S S+ 0 0 67 4,-0.4 -1,-0.1 -2,-0.3 5,-0.1 0.334 77.1 35.3-161.0 -36.7 1.2 4.7 -6.0 5 5 A D S S- 0 0 59 3,-0.3 4,-0.1 0, 0.0 -2,-0.1 0.868 96.9-108.1 -93.9 -78.9 -2.1 6.6 -5.5 6 6 A A S S+ 0 0 91 2,-0.3 3,-0.0 0, 0.0 -3,-0.0 0.152 98.9 31.1 171.7 -31.4 -1.5 10.1 -4.1 7 7 A A S S+ 0 0 84 2,-0.0 0, 0.0 0, 0.0 0, 0.0 0.770 99.4 71.5-111.6 -61.5 -2.6 10.2 -0.5 8 8 A T S S- 0 0 45 1,-0.1 -4,-0.4 17,-0.0 -2,-0.3 -0.182 71.3-150.1 -55.2 150.4 -2.2 6.8 1.1 9 9 A I - 0 0 93 15,-0.2 17,-0.2 -6,-0.1 -6,-0.2 -0.725 2.9-132.9-119.8 172.3 1.5 5.9 1.8 10 10 A b B -A 2 0A 2 -8,-1.5 -8,-1.5 -2,-0.2 3,-0.1 -0.989 12.1-139.6-131.5 136.6 3.5 2.6 1.9 11 11 A P - 0 0 68 0, 0.0 -9,-0.7 0, 0.0 3,-0.3 0.208 44.8 -68.5 -72.5-161.1 6.0 1.4 4.5 12 12 A D S S+ 0 0 129 1,-0.2 3,-0.1 -11,-0.1 0, 0.0 -0.687 112.4 23.3 -96.0 150.2 9.2 -0.5 3.6 13 13 A G S S+ 0 0 55 -2,-0.3 2,-0.3 1,-0.2 -1,-0.2 0.977 104.0 98.1 64.8 53.3 9.3 -4.0 2.2 14 14 A T - 0 0 20 -3,-0.3 2,-0.4 14,-0.2 -1,-0.2 -0.977 64.1-126.5-159.4 170.7 5.7 -3.9 0.8 15 15 A T E -B 27 0B 68 12,-2.4 12,-2.5 -2,-0.3 10,-0.1 -0.986 32.9-107.2-130.9 131.9 3.7 -3.3 -2.4 16 16 A a E +B 26 0B 30 -2,-0.4 2,-0.3 10,-0.2 10,-0.3 -0.268 52.4 162.0 -54.2 132.8 0.9 -0.8 -3.0 17 17 A S E -B 25 0B 32 8,-3.2 8,-2.5 6,-0.0 2,-0.4 -0.992 36.1-121.5-152.1 157.9 -2.4 -2.7 -3.2 18 18 A L E -B 24 0B 84 -2,-0.3 6,-0.2 6,-0.2 8,-0.0 -0.859 26.8-130.4-105.9 136.2 -6.2 -2.0 -2.9 19 19 A S > - 0 0 15 4,-2.9 3,-1.7 -2,-0.4 -1,-0.0 -0.342 26.1-109.3 -78.3 165.4 -8.3 -3.9 -0.4 20 20 A P T 3 S+ 0 0 106 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.632 121.4 54.9 -69.4 -11.6 -11.6 -5.6 -1.3 21 21 A Y T 3 S- 0 0 202 2,-0.1 3,-0.1 0, 0.0 -2,-0.0 0.358 127.5 -97.9-101.5 5.2 -13.4 -2.8 0.6 22 22 A G S < S+ 0 0 54 -3,-1.7 2,-0.6 1,-0.3 -4,-0.0 0.726 75.9 148.1 86.7 21.2 -11.7 -0.0 -1.4 23 23 A V - 0 0 74 2,-0.0 -4,-2.9 1,-0.0 2,-0.4 -0.790 42.5-139.1 -93.9 123.1 -9.0 0.6 1.3 24 24 A W E +B 18 0B 97 -2,-0.6 2,-0.3 -6,-0.2 -6,-0.2 -0.637 44.2 130.8 -81.1 130.7 -5.6 1.7 -0.1 25 25 A Y E -B 17 0B 86 -8,-2.5 -8,-3.2 -2,-0.4 2,-0.4 -0.983 53.1-100.2-165.4 173.1 -2.7 0.0 1.6 26 26 A b E -B 16 0B 19 -2,-0.3 -10,-0.2 -10,-0.3 -17,-0.0 -0.880 29.7-151.3-109.2 137.2 0.6 -1.8 1.1 27 27 A S E -B 15 0B 41 -12,-2.5 -12,-2.4 -2,-0.4 2,-0.6 -0.829 24.3-109.1-108.4 147.4 0.9 -5.6 1.4 28 28 A P - 0 0 106 0, 0.0 -14,-0.2 0, 0.0 2,-0.2 -0.583 42.0-171.2 -73.6 114.1 4.0 -7.6 2.4 29 29 A F 0 0 124 -2,-0.6 0, 0.0 -16,-0.2 0, 0.0 -0.576 360.0 360.0-102.5 169.3 5.3 -9.4 -0.8 30 30 A S 0 0 185 -2,-0.2 -16,-0.0 -16,-0.0 -17,-0.0 -0.515 360.0 360.0-169.0 360.0 8.1 -12.0 -1.1