==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METALLOTHIONEIN 24-JUN-99 1QJL . COMPND 2 MOLECULE: METALLOTHIONEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: STRONGYLOCENTROTUS PURPURATUS; . AUTHOR R.RIEK,B.PRECHEUR,Y.WANG,E.A.MACKAY,G.WIDER,P.GUNTERT,A.LIU, . 28 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2525.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 11 39.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 37 A I 0 0 188 0, 0.0 15,-0.2 0, 0.0 16,-0.0 0.000 360.0 360.0 360.0-178.8 -8.6 1.2 -4.6 2 38 A C - 0 0 43 13,-1.2 5,-0.1 1,-0.2 14,-0.1 -0.201 360.0-171.1 -44.9 110.6 -5.4 2.3 -3.0 3 39 A T + 0 0 135 2,-0.0 2,-1.1 3,-0.0 -1,-0.2 0.680 54.4 109.0 -80.8 -20.0 -4.9 5.7 -4.6 4 40 A N > - 0 0 39 1,-0.2 3,-1.7 2,-0.1 -2,-0.1 -0.442 48.1-174.5 -62.1 97.5 -1.5 5.9 -3.1 5 41 A A T 3 S+ 0 0 96 -2,-1.1 -1,-0.2 1,-0.3 -2,-0.0 0.571 77.1 78.7 -70.8 -8.4 0.5 5.6 -6.3 6 42 A A T 3 S+ 0 0 31 15,-0.1 2,-0.4 19,-0.1 -1,-0.3 0.480 75.9 96.6 -77.3 -2.6 3.5 5.5 -4.0 7 43 A C < - 0 0 18 -3,-1.7 2,-0.2 14,-0.1 14,-0.0 -0.740 55.7-169.4 -91.6 136.0 2.6 1.9 -3.4 8 44 A K + 0 0 191 -2,-0.4 2,-0.2 2,-0.0 -3,-0.1 -0.536 35.3 137.4-123.2 63.0 4.4 -0.8 -5.4 9 45 A C - 0 0 55 -2,-0.2 2,-0.3 6,-0.0 -2,-0.0 -0.514 42.9-130.6-102.0 172.4 2.3 -3.9 -4.6 10 46 A A > - 0 0 84 -2,-0.2 3,-2.2 1,-0.0 2,-0.1 -0.874 48.3 -63.7-124.4 157.2 1.2 -6.6 -6.9 11 47 A N T 3 S+ 0 0 183 -2,-0.3 3,-0.1 1,-0.3 -1,-0.0 -0.122 124.8 51.8 -40.5 98.4 -2.2 -8.3 -7.5 12 48 A G T 3 S+ 0 0 74 1,-0.5 -1,-0.3 -2,-0.1 2,-0.0 0.008 73.3 114.1 158.8 -34.1 -2.5 -9.8 -4.0 13 49 A C < - 0 0 66 -3,-2.2 -1,-0.5 1,-0.1 2,-0.2 -0.361 63.1-137.3 -64.0 141.5 -1.9 -6.9 -1.6 14 50 A K > + 0 0 189 1,-0.1 2,-2.9 4,-0.1 3,-1.0 -0.222 50.1 146.9 -94.1 42.1 -5.0 -6.0 0.5 15 51 A C T 3 + 0 0 15 1,-0.2 -13,-1.2 -2,-0.2 -1,-0.1 -0.359 40.7 98.7 -76.7 60.6 -4.3 -2.3 -0.0 16 52 A G T 3 S- 0 0 56 -2,-2.9 -1,-0.2 -15,-0.2 3,-0.1 0.690 101.4 -0.6-114.3 -37.6 -8.0 -1.7 -0.0 17 53 A S S < S+ 0 0 131 -3,-1.0 -2,-0.1 1,-0.1 -3,-0.0 -0.189 125.4 61.2-150.5 46.1 -8.7 -0.5 3.5 18 54 A G + 0 0 61 -4,-0.0 2,-0.2 0, 0.0 -4,-0.1 -0.077 60.0 160.2-168.6 50.2 -5.3 -0.6 5.2 19 55 A C + 0 0 58 -3,-0.1 -4,-0.0 -4,-0.1 -3,-0.0 -0.544 8.5 170.3 -81.0 146.5 -2.9 1.7 3.5 20 56 A S + 0 0 112 -2,-0.2 7,-0.4 2,-0.1 2,-0.3 -0.329 39.7 96.1-155.3 61.1 0.2 2.8 5.4 21 57 A C - 0 0 25 5,-0.1 5,-0.2 -14,-0.0 2,-0.2 -0.974 51.1-144.1-149.4 157.2 2.6 4.6 3.1 22 58 A T B > -A 25 0A 77 3,-2.2 2,-1.8 -2,-0.3 3,-1.8 -0.507 47.8 -66.0-114.1-176.6 3.4 8.2 2.1 23 59 A E T 3 S+ 0 0 183 1,-0.3 3,-0.1 -2,-0.2 -16,-0.0 -0.553 129.9 2.0 -75.3 85.8 4.4 10.0 -1.1 24 60 A G T 3 S+ 0 0 68 -2,-1.8 -1,-0.3 -18,-0.0 2,-0.2 0.553 116.4 90.9 110.4 17.1 7.8 8.4 -1.5 25 61 A N B < +A 22 0A 96 -3,-1.8 -3,-2.2 2,-0.0 2,-0.5 -0.714 43.7 160.8-145.4 87.9 7.6 6.1 1.5 26 62 A C + 0 0 54 -2,-0.2 -5,-0.1 -5,-0.2 -19,-0.0 -0.955 5.2 160.0-114.7 119.8 6.2 2.6 0.8 27 63 A A 0 0 91 -2,-0.5 -20,-0.1 -7,-0.4 -1,-0.1 -0.426 360.0 360.0-135.1 57.4 7.0 -0.1 3.2 28 64 A C 0 0 106 -20,-0.0 -1,-0.1 -15,-0.0 -19,-0.0 0.989 360.0 360.0 -73.7 360.0 4.3 -2.7 2.5