==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 10-JUL-99 1QK6 . COMPND 2 MOLECULE: HUWENTOXIN-I; . SOURCE 2 ORGANISM_SCIENTIFIC: SELENOCOSMIA HUWENA; . AUTHOR Y.QU,S.LIANG,J.DING,X.LIU,R.ZHANG,X.GU . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2815.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 10 30.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 160 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -58.2 -1.5 13.6 -0.6 2 2 A a - 0 0 46 1,-0.1 14,-0.1 15,-0.0 13,-0.0 -0.782 360.0 -89.2-131.0 176.2 -1.6 9.8 0.2 3 3 A K - 0 0 74 12,-0.4 14,-0.3 -2,-0.2 -1,-0.1 -0.137 47.8 -98.3 -77.0-179.2 -2.8 7.6 3.1 4 4 A G - 0 0 46 1,-0.2 3,-0.4 12,-0.1 13,-0.2 0.056 53.0 -68.4 -84.1-160.0 -0.5 6.5 6.0 5 5 A V S S+ 0 0 64 1,-0.2 25,-0.2 11,-0.1 -1,-0.2 -0.497 113.0 31.6 -90.8 164.0 1.4 3.2 6.3 6 6 A F S S+ 0 0 135 23,-2.1 2,-0.6 1,-0.2 -1,-0.2 0.866 82.6 150.9 59.2 35.4 -0.2 -0.3 6.8 7 7 A D - 0 0 52 -3,-0.4 22,-1.4 -4,-0.1 2,-0.4 -0.867 53.1-119.5-102.2 122.4 -3.3 0.9 4.8 8 8 A A + 0 0 76 -2,-0.6 2,-0.3 20,-0.3 20,-0.2 -0.408 51.7 159.6 -60.3 112.8 -5.2 -1.8 2.9 9 9 A b - 0 0 5 -2,-0.4 5,-0.0 18,-0.2 12,-0.0 -0.887 44.2 -98.9-133.6 165.9 -4.9 -0.7 -0.7 10 10 A T > > - 0 0 67 -2,-0.3 3,-1.0 1,-0.0 5,-0.6 -0.748 36.8-127.1 -89.9 130.8 -5.2 -2.3 -4.2 11 11 A P T 3 5S+ 0 0 52 0, 0.0 12,-0.1 0, 0.0 -1,-0.0 -0.530 93.5 25.7 -76.2 136.2 -1.9 -3.3 -5.9 12 12 A G T 3 5S+ 0 0 76 -2,-0.2 -2,-0.0 10,-0.1 0, 0.0 0.204 103.3 85.0 95.4 -16.6 -1.5 -1.9 -9.4 13 13 A K T < 5S- 0 0 149 -3,-1.0 -3,-0.0 9,-0.0 0, 0.0 0.657 86.0-141.0 -90.5 -16.2 -3.8 1.0 -8.7 14 14 A N T 5 + 0 0 148 -4,-0.4 7,-0.0 1,-0.1 -5,-0.0 0.934 51.0 144.6 57.1 46.7 -1.0 3.2 -7.2 15 15 A E < + 0 0 96 -5,-0.6 -12,-0.4 2,-0.1 -1,-0.1 0.866 52.6 66.1 -83.1 -37.6 -3.4 4.5 -4.5 16 16 A c S S- 0 0 12 -6,-0.2 6,-0.1 1,-0.2 -12,-0.1 -0.112 105.0 -69.1 -74.3 179.3 -0.8 4.7 -1.7 17 17 A a - 0 0 24 -14,-0.3 -1,-0.2 -13,-0.2 -2,-0.1 -0.167 41.3-116.2 -65.1 166.3 2.2 7.0 -1.7 18 18 A P S S+ 0 0 107 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.807 114.7 55.4 -75.1 -32.1 5.1 6.6 -4.2 19 19 A N S S+ 0 0 105 12,-0.0 13,-0.6 2,-0.0 2,-0.2 0.777 111.1 52.3 -73.2 -23.3 7.7 5.9 -1.5 20 20 A R E S-A 31 0A 39 11,-0.2 2,-0.3 12,-0.1 11,-0.2 -0.620 75.7-148.3-106.8 168.8 5.5 3.0 -0.2 21 21 A V E -A 30 0A 52 9,-2.1 9,-1.6 -2,-0.2 2,-0.8 -0.970 22.8-108.8-137.6 154.0 3.9 0.1 -2.1 22 22 A b E -A 29 0A 24 -2,-0.3 7,-0.2 7,-0.2 2,-0.1 -0.708 37.6-139.5 -84.1 110.2 0.7 -2.0 -1.8 23 23 A S - 0 0 20 5,-2.8 -14,-0.2 -2,-0.8 4,-0.1 -0.410 11.9-162.1 -69.1 144.0 1.7 -5.5 -0.5 24 24 A D S S+ 0 0 124 3,-0.2 -1,-0.1 2,-0.2 -2,-0.0 0.865 90.0 43.1 -93.8 -44.8 -0.1 -8.4 -2.1 25 25 A K S S+ 0 0 202 1,-0.2 -2,-0.1 3,-0.1 -1,-0.1 0.901 129.4 30.4 -68.6 -38.8 0.7 -11.2 0.5 26 26 A H S S- 0 0 98 2,-0.2 -1,-0.2 0, 0.0 -2,-0.2 0.779 96.7-144.3 -89.7 -28.4 -0.1 -8.7 3.4 27 27 A K + 0 0 134 1,-0.2 2,-0.3 -4,-0.1 -18,-0.2 0.788 63.7 96.2 70.7 28.4 -2.7 -6.7 1.4 28 28 A W S S- 0 0 70 -20,-0.2 -5,-2.8 -7,-0.1 -20,-0.3 -0.943 81.0 -91.4-143.2 165.4 -1.6 -3.4 3.0 29 29 A c E +A 22 0A 0 -22,-1.4 -23,-2.1 -2,-0.3 2,-0.3 -0.505 53.6 154.7 -76.5 144.3 0.7 -0.3 2.3 30 30 A K E -A 21 0A 52 -9,-1.6 -9,-2.1 -25,-0.2 2,-0.1 -0.961 43.3 -78.6-158.7 174.4 4.2 -0.6 3.6 31 31 A W E -A 20 0A 139 -2,-0.3 -11,-0.2 -11,-0.2 -12,-0.0 -0.380 24.9-146.4 -78.9 160.7 7.8 0.7 3.1 32 32 A K 0 0 134 -13,-0.6 -1,-0.1 1,-0.3 -12,-0.1 0.820 360.0 360.0 -95.7 -38.5 10.1 -0.7 0.4 33 33 A L 0 0 233 0, 0.0 -1,-0.3 0, 0.0 0, 0.0 -0.947 360.0 360.0-150.4 360.0 13.5 -0.4 2.2