==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LECTIN 10-JUL-99 1QK7 . COMPND 2 MOLECULE: SELENOCOSMIA HUWENA LECTIN-I; . SOURCE 2 ORGANISM_SCIENTIFIC: SELENOCOSMIA HUWENA; . AUTHOR S.LU,S.LIANG,X.GU . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3009.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 37.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 18.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 120 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-108.1 -7.7 -2.6 -9.5 2 2 A a > + 0 0 36 2,-0.1 3,-1.7 3,-0.0 2,-0.4 0.521 360.0 116.5 -98.7 -5.9 -4.3 -1.5 -8.0 3 3 A L T 3 S+ 0 0 103 1,-0.2 24,-0.1 22,-0.1 3,-0.1 -0.471 71.5 40.1 -65.4 119.1 -4.4 -4.0 -5.1 4 4 A G T 3 S+ 0 0 51 22,-0.9 -1,-0.2 1,-0.4 2,-0.1 0.081 76.1 129.8 129.4 -23.1 -1.4 -6.3 -5.6 5 5 A D < - 0 0 94 -3,-1.7 21,-2.8 21,-0.2 -1,-0.4 -0.410 57.3-127.2 -63.8 132.4 1.3 -3.9 -6.9 6 6 A K B +A 25 0A 156 19,-0.3 19,-0.3 -2,-0.1 2,-0.3 -0.516 34.3 173.8 -81.0 149.7 4.5 -4.3 -4.9 7 7 A b + 0 0 1 17,-1.6 11,-0.0 13,-0.2 13,-0.0 -0.968 24.7 178.2-149.9 165.2 6.1 -1.3 -3.2 8 8 A D S S- 0 0 121 -2,-0.3 -1,-0.1 11,-0.0 17,-0.1 0.530 75.7 -35.4-135.4 -57.8 9.0 -0.3 -0.9 9 9 A Y S S+ 0 0 225 0, 0.0 3,-0.1 0, 0.0 10,-0.1 0.483 132.8 11.7-139.3 -59.2 9.3 3.4 -0.3 10 10 A N S S+ 0 0 150 1,-0.1 -3,-0.0 2,-0.1 0, 0.0 -0.180 80.4 127.0-120.9 41.6 8.5 5.6 -3.3 11 11 A N - 0 0 84 -6,-0.0 -1,-0.1 1,-0.0 -4,-0.1 0.977 68.5-124.0 -62.8 -53.9 6.9 3.0 -5.6 12 12 A G - 0 0 61 -3,-0.1 3,-0.1 2,-0.1 -2,-0.1 0.766 27.0-161.1 107.9 75.8 3.7 5.0 -6.2 13 13 A c - 0 0 37 4,-0.2 3,-0.1 1,-0.1 6,-0.1 -0.307 35.6 -82.1 -79.3 169.9 0.5 3.1 -5.3 14 14 A a > - 0 0 52 1,-0.2 3,-2.6 -12,-0.1 2,-0.2 -0.244 64.5 -73.9 -67.7 162.0 -2.9 4.2 -6.7 15 15 A S T 3 S+ 0 0 124 1,-0.3 -1,-0.2 -3,-0.1 3,-0.1 -0.376 127.0 21.1 -58.8 120.4 -4.8 7.1 -4.9 16 16 A G T 3 S+ 0 0 49 1,-0.4 13,-2.3 -2,-0.2 2,-0.3 0.181 102.6 107.3 105.0 -17.5 -6.1 5.6 -1.6 17 17 A Y E < -B 28 0B 54 -3,-2.6 -1,-0.4 11,-0.2 2,-0.3 -0.701 49.3-166.4 -95.1 147.4 -3.6 2.7 -1.6 18 18 A V E -B 27 0B 76 9,-2.6 9,-2.7 -2,-0.3 2,-0.8 -0.877 28.8-103.0-128.6 162.4 -0.6 2.5 0.8 19 19 A b E -B 26 0B 46 -2,-0.3 7,-0.2 7,-0.2 2,-0.2 -0.740 37.9-156.5 -88.6 110.7 2.6 0.4 1.1 20 20 A S - 0 0 35 5,-2.1 4,-0.3 -2,-0.8 5,-0.3 -0.524 15.7-140.9 -84.1 153.1 2.1 -2.3 3.8 21 21 A R S S+ 0 0 237 -2,-0.2 -1,-0.1 3,-0.2 -2,-0.0 0.516 91.7 68.7 -90.6 -4.1 5.2 -3.8 5.5 22 22 A T S S- 0 0 87 3,-0.1 -1,-0.1 1,-0.1 0, 0.0 0.981 125.5 -0.2 -77.8 -66.7 3.6 -7.4 5.6 23 23 A W S S- 0 0 187 2,-0.1 -2,-0.1 -17,-0.0 -1,-0.1 0.337 97.2-122.1-104.4 6.8 3.6 -8.3 1.9 24 24 A K + 0 0 111 -4,-0.3 -17,-1.6 1,-0.2 2,-0.3 0.979 69.3 117.2 52.3 65.2 5.2 -5.0 0.7 25 25 A W B S-A 6 0A 44 -5,-0.3 -5,-2.1 -19,-0.3 2,-0.6 -0.946 74.1 -78.8-151.3 172.0 2.3 -4.0 -1.7 26 26 A c E +B 19 0B 0 -21,-2.8 -22,-0.9 -2,-0.3 2,-0.3 -0.653 54.1 176.1 -79.7 118.6 -0.3 -1.3 -2.3 27 27 A V E -B 18 0B 32 -9,-2.7 -9,-2.6 -2,-0.6 2,-0.3 -0.839 39.0 -88.4-121.7 160.7 -3.3 -2.0 0.0 28 28 A L E -B 17 0B 99 -2,-0.3 2,-0.4 -11,-0.2 -11,-0.2 -0.473 46.8-116.2 -67.5 127.1 -6.6 -0.1 0.7 29 29 A A - 0 0 48 -13,-2.3 -1,-0.1 -2,-0.3 -12,-0.0 -0.491 31.7-167.9 -66.8 117.8 -6.0 2.6 3.4 30 30 A G - 0 0 65 -2,-0.4 2,-2.0 2,-0.0 -1,-0.1 -0.829 8.4-160.8-113.2 96.1 -8.2 1.5 6.4 31 31 A P 0 0 110 0, 0.0 -2,-0.0 0, 0.0 -1,-0.0 -0.497 360.0 360.0 -74.4 80.6 -8.4 4.4 9.0 32 32 A W 0 0 314 -2,-2.0 -2,-0.0 0, 0.0 0, 0.0 0.868 360.0 360.0 51.4 360.0 -9.6 2.2 11.9